• Title/Summary/Keyword: Stochastic order

Search Result 581, Processing Time 0.027 seconds

A Study on the Power Spectral Analysis of Background EEG with Pisarenko Harmonic Decomposition (Pisarenko Harmonic Decomposition에 의한 배경 뇌파 파워 스펙트럼 분석에 관한 연구)

  • Jung, Myung-Jin;Hwang, Soo-Young;Choi, Kap-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1271-1275
    • /
    • 1987
  • With the stochastic process which consists of the harmonic sinusoid and the white nosie, the power spectrum of background EEG is estimated by the Pisarenko Harmonic Decomposition. The estimating results are examined and compared with the results from the maximum entropy spectral estimation, and the optimal order of this model can be determined from the eigen value's fluctuation of autocorrelation of background EEG. From the comparing results, this paper ensures that this method is possible to analyze the power spectrum of background EEG.

  • PDF

Application Markov State Model for the RCM of Combustion turbine Generating Unit (Markov State Model을 이용한 복합화력 발전설비의 최적의 유지보수계획 수립)

  • Shin, Jun-Seok;Lee, Seung-Hyuk;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.357-359
    • /
    • 2006
  • Traditional time based preventive maintenance is used to constant maintenance interval for equipment life. In order to consider economic aspect for time based preventive maintenance, preventive maintenance is scheduled by RCM(Reliability-Centered Maintenance) evaluation. So, Markov state model is utilized considering stochastic state in RCM. In this paper, a Markov state model which can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by a Markov model. In case study, simulation results about RCM are used to the real historical data of combustion turbine generating units in Korean power systems.

  • PDF

A Robust Principal Component Neural Network

  • Changha Hwang;Park, Hyejung;A, Eunyoung-N
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.625-632
    • /
    • 2001
  • Principal component analysis(PCA) is a multivariate technique falling under the general title of factor analysis. The purpose of PCA is to Identify the dependence structure behind a multivariate stochastic observation In order to obtain a compact description of it. In engineering field PCA is utilized mainly (or data compression and restoration. In this paper we propose a new robust Hebbian algorithm for robust PCA. This algorithm is based on a hyperbolic tangent function due to Hampel ef al.(1989) which is known to be robust in Statistics. We do two experiments to investigate the performance of the new robust Hebbian learning algorithm for robust PCA.

  • PDF

Design of LQR controller for active suspension system of Partially Filled Tank Cars

  • Feizi, Mohammad Mahdi;Rezvani, Mohammad Ali
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.329-353
    • /
    • 2014
  • Increasing usage of tank cars and their intrinsic instability due to sloshing of contents have caused growing maintenance costs as well as more frequent hazards and defects like derailment and fatigue of bogies and axels. Therefore, varieties of passive solutions have been represented to improve dynamical parameters. In this task, assuming 22 degrees of freedom, dynamic analysis of partially filled tank car traveling on a curved track is investigated. In order to consider stochastic geometry of track; irregularities have been derived randomly by Mont Carlo method. More over the fluid tank model with 1 degree of freedom is also presented by equivalent mechanical approach in terms of pendulum. An active suspension system for described car is designed by using linear quadratic optimal control theory to decrease destructive effects of fluid sloshing. Eventually, the performance of the active suspension system has been compared with that of the passive one and a study is carried out on how active suspension may affect the dynamical parameters such as displacements and Nadal's derailment index.

Robust Least Squares Motion Deblurring Using Inertial Sensor for Strapdown Image IR Sensors (스트랩다운 적외선 영상센서를 위한 관성센서 기반 강인최소자승 움직임 훼손영상 복원 기법)

  • Kim, Ki-Seung;Ra, Sung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.314-320
    • /
    • 2012
  • This paper proposes a new robust motion deblurring filter using the inertial sensor measurements for strapdown image IR applications. With taking the PSF measurement error into account, the motion blurred image is modeled by the linear uncertain state space equation with the noise corrupted measurement matrix and the stochastic parameter uncertainty. This motivates us to solve the motion deblurring problem based on the recently developed robust least squares estimation theory. In order to suppress the ringing effect on the deblurred image, the robust least squares estimator is slightly modified by adoping the ridge-regression concept. Through the computer simulations using the actual IR scenes, it is demonstrated that the proposed algorithm shows superior and reliable motion deblurring performance even in the presence of time-varying motion artifact.

Statistical Measurement of Monsyllable Entropy for Korean Language (한국어 음절의 Entropy에 관한 연구)

  • 이주근;최흥문
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.3
    • /
    • pp.15-21
    • /
    • 1974
  • The information amount of monosyllables(characters) in Korean language is measured, in order of the following 3 steps. 1) The basic consonants and vowels are partitioned into two steps, 2) These set symbols, C and V, are sequentially combined to obtain the equation which represent the flow state of monosyllables. 3) From the equation, the state graphs can be constructed to examine the proferties of a stochastic process of monosyllables in Korean language. Furthermore, the entropy of Korean language by statistics is measured and compared with that of the western languages. The proposed methods are more definite, systematic, and simpler than the usual methods in examining the nature of information sources.

  • PDF

Mode identifiability of a multi-span cable-stayed bridge utilizing stabilization diagram and singular values

  • Goi, Y.;Kim, C.W.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.391-411
    • /
    • 2016
  • This study investigates the mode identifiability of a multi-span cable-stayed bridge in terms of a benchmark study using stabilization diagrams of a system model identified using stochastic subspace identification (SSI). Cumulative contribution ratios (CCRs) estimated from singular values of system models under different wind conditions were also considered. Observations revealed that wind speed might influence the mode identifiability of a specific mode of a cable-stayed bridge. Moreover the cumulative contribution ratio showed that the time histories monitored during strong winds, such as those of a typhoon, can be modeled with less system order than under weak winds. The blind data Acc 1 and Acc 2 were categorized as data obtained under a typhoon. Blind data Acc 3 and Acc 4 were categorized as data obtained under wind conditions of critical wind speeds around 7.5 m/s. Finally, blind data Acc 5 and Acc 6 were categorized as data measured under weak wind conditions.

A Study on the Improvement of Intermodulation Distortion for Multistage Microwave Two-port Networks (다단 마이크로파 2-포트 회로망의 상호변조 왜곡 개선에 관한 연구)

  • Eui Joon Park
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.50-57
    • /
    • 1994
  • The analysis of the two-tone intermodulation distortion of multistage two-ports with gain and mismatching losses is presented with simplified two-port analyses and statistical viewpoint. The uncertainty obtained from unknown phase angles of the intermodulation distortion signals to the system designer is reduced using stochastic process, hence improving the accuracy of the solution. Based on the dc power dependance of third-order intercept point of each stage, the new efficient method for improving the total intercept point is also suggested with only the relation of dc power and available power gain criteria. Experimental verification on specific amplifiers used for cellular mobile communication comparing predicted and measured intercept points for various power conditions is presented.

  • PDF

Robust adaptive control by single parameter adaptation and the stability analysis (단일계수적응을 통한 강건한 적응제어시의 설계및 안정성 해석)

  • 오준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.331-338
    • /
    • 1990
  • In adaptive control, the lack of persistent and rich excitation causes the estimated parameters to drift, which degrade the performance of the system and may introduces instability to the system in a stochastic environment. To solve the problem of the parameter drift, the concept of single parameter adaptation is presented. For the parameter identification, a priori error is directly used for adaptation error. The structure of the controller is based upon the minimum variance control technique. The stability and robustness analysis is carried out by the sector stability theorem for the second order system. The computer simulation is performed to justify the theoretical analysis for the various cases.

Modeling of Microstructural Evolution in Squeeze Casting of an Al-4.5wt%Cu Alloy (용탕단조시 Al-4.5%Cu합금의 조직예측)

  • Cho, In-Sung;Hong, Chun-Pyo;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.550-555
    • /
    • 1996
  • A stochastic model, based on the coupling of the finite volume(FV) method for macroscopic heat flow calculation and a two-dimensional cellular automaton(CA) model for treating microstructural evolution was applied-for the prediction of microstructural evolution in squeeze casting. The interfacial heat transfer coefficient at the casting/die interface was evaluated as a function of time using an inverse problem method in order to provide a quantitative simulation of solidification sequences under high pressure. The effects of casting process variables on the formation of solidification grain structures and on the columnar to equiaxed transition of an Al-4.5wt%Cu alloy in squeeze casting were investigated. The calculated solidification grain structures were in good agreement with those obtained experimentally.

  • PDF