References
- Akaike, H. (1973), "Information theory and extension of the maximum likelihood principle", Proceedings of the 2nd Int. Symp. on Information Theory, Petrov, B. N. and Csaki. F., Tsahkadsov, Armenia, USSR.
- Bergermann, R. and Schlaich, M. (1996), "Ting Kau Bridge, Hong Kong", Struct. Eng. Int., 6(3), 152-154. https://doi.org/10.2749/101686696780495563
- Brincker, R., Zhang, L. and Andersen, P. (2000), "Modal identification from ambient response using frequency domain decomposition", IMAC XVIII, San Antonio, USA.
- Chang, K.C., Kim, C.W. and Kitauchi, S. (2013), "Stability diagram aided multivariate AR analysis for identifying the modal parameters of al steel truss bridge subjected to artificial damage", Proceedings of the 13th East Asia-Pacific Conf. on Structural Eng. and Constr. (EASEC-13), September 11-13, Sapporo, Japan.
- Daniels, R.W. (1974), Approximation Methods for Electronic Filter Design, McGraw-Hill, New York.
- Deraemaeker, A., Reynders, E., De Roeck, G. and Kullaa, J. (2007), "Vibration-based structural health monitoring using output-only measurements under changing environment", Mech. Syst. Signal Pr., 22(1), 34-56. https://doi.org/10.1016/j.ymssp.2007.07.004
- He, X. and De Roeck, G. (1997), "System identification of mechanical structures by a high-order multivariate autoregressive model", Comput. Struct., 64(1-4), 341-351. https://doi.org/10.1016/S0045-7949(96)00126-5
- Heylen, W., Lammens, S. and Sas, P. (1997), Modal Analysis Theory and Testing, K.U. Leuven, Belgium.
- Kim, C.W. and Chang, K.C. (2014a), "A field experiment on a simply supported steel truss bridge for damage detection utilizing statistical patterns of identified modal parameters", Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management, (Eds., Furuta, Frangopol, Akiyama), Proceedings of the 4thInt. Symp. On Life-Cycle Civil Eng.,, Nov. 16-19, 2014, Tokyo, Japan.
- Kim, C.W., Isemoto, R., Sugiura, K. and Kawatani, M. (2013), "Structural fault detection of bridges based on linear system parameter and MTS method", J. of JSCE, 1(1), 32-43. https://doi.org/10.2208/journalofjsce.1.1_32
- Kim, C.W., Kitauchi, S., Sugiura, K. and Kawatani, M. (2014b), "Utilizing reproduced autoregressive model for damage detection of real truss bridges", Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management, (Eds., Furuta, Frangopol, Akiyama), Proceedings of the 4th Int. Symp. On Life-Cycle Civil Eng., Nov. 16-19, 2014, Tokyo, Japan.
- Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021
- Ni, Y.Q., Wang, Y.W. and Xia, Y.X. (2015), "Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses", Smart Struct. Syst., 15(2), 447-468. https://doi.org/10.12989/sss.2015.15.2.447
- Peeters, B., Dammekens, F., Magalhaes, F., Van der Auweraer, H., and Cunha, A. (2006), "Multi-run Operational Modal analysis of the Guadiana Cable-stayed Bridge", Proceedings of the IMAC24, St. Louis, MO, January.
- Van Overschee, P. and De Moor, B (1996), Subspace Identification for Linear Systems, Kluwer Academic Publishers.
- Wenzel, H. and Pichler, D. (2006), Ambient Vibration Monitoring, John Wiley & Sons.
- Wong, K.Y. (2004), "Instrumentation and health monitoring of cable-supported bridges", Struct. Control Health Monit., 11(2), 91-124. https://doi.org/10.1002/stc.33
- Zhang, Q.W. (2007), "Statistical damage identification for bridges using ambient vibration data", Comput. Struct., 85(7-8), 476-485. https://doi.org/10.1016/j.compstruc.2006.08.071
Cited by
- Investigation of Operational Modal Identification of a Cable-Stayed Bridge Based on Bayesian Estimation Considering Stochastic Uncertainty vol.72, pp.2, 2016, https://doi.org/10.2208/jscejam.72.I_751
- Mode identifiability of a cable-stayed bridge using modal contribution index vol.20, pp.2, 2017, https://doi.org/10.12989/sss.2017.20.2.115
- Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation vol.23, pp.1, 2016, https://doi.org/10.12989/sss.2019.23.1.015
- Automatic identification of modal parameters for structures based on an uncertainty diagram and a convolutional neural network vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.08.077
- Application of short-time stochastic subspace identification to estimate bridge frequencies from a traversing vehicle vol.230, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2020.111688