• Title/Summary/Keyword: Stochastic Combats

Search Result 5, Processing Time 0.018 seconds

Probability Distribution of Battle Duration in Stochastic Combats (전투시간의 확률분포에 관한 연구)

  • 홍윤기
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.2
    • /
    • pp.1-12
    • /
    • 2003
  • Knowing the characteristic of battle duration is important for commanders and logicians in the analysis of combat realization. Analytic solutions for mean and standard deviation can be found in small sized battles. Stochastic combat simulation model is utilized to study a probabilistic behavior of the combat duration. Output data is fitted to a certain probability distribution and some moments such as skewness and kurtosis are investigated. Fire allocation strategies, reselect options, interfiring time random variables, and kill rates are considered to investigate how they affect the battle termination time.

Stochastic Combats with Time Limitation (전투시간(戰鬪時間)의 제한성(制限性)을 고려(考慮)한 다수(多數) 대(對) 다수(多數) 전투모형(戰鬪模型))

  • Bae, Do-Seon;Gwon, Tae-Yeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.5 no.2
    • /
    • pp.2-7
    • /
    • 1979
  • The fundamental stochastic duel of Williams and Ancker is combined with the probabilistic linear, square and mixed laws of Brown and Smith when the battle time is limited and interfiring times are continuous. The Probability of a given side's winnig or a draw is derived in a recursive equation with Laplace transforms. Examples with negative exponential firing times are given. In linear law an exact closed form solution is obtained, whereas for square and mixed laws only square ($2{\times}2$) duels are considered.

  • PDF

Evaluation of an Efficient Approximation to Many-on-Many Stochastic Combats

  • Hong, Yoon-Gee
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.2
    • /
    • pp.96-113
    • /
    • 1992
  • A time-varying nonhomogeneous poisson process approximation of the nonexponential stochastic Lanchester model is defined and evaluated over a range of combat parameters including initial force sizes. breakpoints. and interkilling random variables. The proposed approximation is far excellent and takes much less CPU time than the existing models. The sensitivity analysis was peformed to evaluate the efficiency of the proposed model and three recommended factors are suggested to guide the combat operators.

  • PDF

A Simulation Study of Stochastic Combat Networks (확률과정을 따르는 전투 네트워크 시뮬레이션 연구)

  • Min, Hyun-Joon;Hong, Yoon-Gee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.113-123
    • /
    • 2010
  • The interest in combat network systems rises among specialists as the military technology advances. This study considers some new elements such as characteristics of weapon systems, force moving rules at the end of each small battle, etc. to improve the accuracy of the analysis of series of mini battle problems. There is a significant difference in MOEs among the scenarios and the models. This study suggests some further works in weapon allocation, moving speed, tactics, weather, and topography which need to be investigated.

Finding Interkilling Time Probability Distribution in Stochastic Combats (확률과정 전투에서 명중시간간격 확률분포의 발견)

  • 홍윤기
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.56-69
    • /
    • 2002
  • A technique of finding both probability density and distribution function for interkilling times is considered and demonstrated. An important result is that any arbitrary interfiring time random variables fit to this study, The interfiring renewal density function given a certain interfiring probability density function can be applied to obtain the corresponding interkilling renewal density function which helps us to estimate the expected number of killing events in a time period. The numerical inversion of Laplace transformation makes these possible and the results appear to be excellent. In case of ammunition supply is limited, an alternative way of getting the probability density function of time to the killing is investigated. The convolution technique may give us a means of settling for this new problem.