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Evaluation of an Efficient Approximation to

Many-on-Many Stochastic Combats

Yoon Gee Hong*

Abstract

A time-varying nonhomogeneous Poisson process approximation of the
nonexponential stochastic Lanchester model is defined and evaluated over a
range of combat parameters including initial force sizes, breakpoints, and
interkilling random variables. The proposed approximation is far excellent and
takes much less CPU time than the existing models. The sensitivity analysis was
performed to evaluate the efficiency of the proposed model and three

recommended factors are suggested to guide the combat operators.

1. Introduction

It is widely known that the classical combat models such as the Deterministic
Lanchester (DL) models and the Exponential Lanchester (EL) models do not represent
the most realistic combat realization. The actual process in real systems can
reasonably be expected to exhibit nonstationary phenomena. The methods of
analytically representing nonstationary behavior of stochastic combat systems are not
as available as steady state analysis methods. Simulation or numerical methods of

analysis may be available for some nonstationary systems. The reason for this is that
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each combatant follows an ordinary terminating renewal process associated with him
so that the entire combat becomes a combination of each combatant’s process.
Analytical methods of representing nonstationary behavior- of stochastic combat
situation are not as simple as stationary or deterministic systems. From the previous
works of Ancker(1), Gafarian and Ancker(8), Gafarian and Manion{9), and Hong
(13), we came to the conclusion that it is getting too complex to manipulate as the
initial number of combatants is increased. The number of states in stochastic combat
system increases exponentially for increasingly complex systems. Other methods of
overcoming these defficulties are needed to provide at least good approximations for
large combat size if not same as the Stochastic Lanchester(SL) model
Nonhomogeneous poisson processes of individual combatant may produce a better
approximation.

Harvey(11) tried to investigate the validity of Nonhomogeneous Poisson processes
Approximation (NPPA) as an alternative model that may describe combat situation very
close to the real situation. He developed two different versions of NPPA computer
simulation models which are called interfiring mode] and interkilling model. Monte-Carlo
computer simualtion as an analysis method requires a significant amount of computer
time. Output data from simulation often requires a significant amount of statistical
analysis and a large number of replication would require to achieve small confidence
intervals for mean measures of effectiveness. This study will consider the analytical

way of solving the Nonhomogeneous poisson processes combat system.

2. Underlying Theories for the Stochastic Combat

Models

2. 1. Nonhomogeneous Poisson Process

Nonhomogeneous {nonstationary) poisson process is a generalization of the poisson
process in which the property of stationary increments is dropped. The process is

characterized by the following description found in Heyman and Sobel(12).



{N(1); ¢ > 0} is a counting process that is (W.p. 1) finite for finite values of t,
N(0)=0, and has the following properties :

(1) Time-dependent increments :

- _PNE+AYNO)
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(2) Independent increments : For any ¢ s> 0 N(t+s)~-N(t) is independent of [N(u}:
u <

(3) Orderliness : The jumps of N(t) are (w.p.1) of unit magnitude then [N(t): t >

0] is a nonhomogeneous Poisson process with some finite rate A(t) > 0

If we neglect terms of size o(At), then A () At is the probability of a jump during
(t t+A1y. And Cox and Isham(B) state that "the important features of the process
are that if t, t, -, t, are arbitrary disjoint sets then N(t,), -, N, ) are still
independent poisson vbariables but with

BN =\, xd ik ok
Now the intervals between points of the process are not independent; further, the

nonstationarity of the process complicates their distributions. "They also show the

probability density function (pdf) of the interval x which starts at a point t; for a
Nonhomogeneous poisson process to be,

f, ity = Ayt exp{—S:“ 2 (0dr). (1)

with mean

to+x

E@ : t) =§0 ax exp(- {7 2(an.
The cumulative distribution function (cdf} can be shown be

to+x

F, @it) = 1 - exp{—gt“ 2 (1)dr). @

2.2 Renewal Process

Define the expected number of renewals by time t as M(t) = E[N(1)], customary
called the renewal function, and the corresponding rate function, called the renewal

intensity function, is m(t). An alternative definition of the renewal intensity function



is that

m@® = lm (P {one, or more renewals in{t, t+At))
A0+ At

or, alternatively, for a large number, N, of renewal process Nm({t) At is the
expected number of renewals in the time interval (t, t+At). Also, the probability

of more than one occurrence in At is 0(At).

2.2.1 backward Recurrence Time

The backward recurrence time, Y(t), is defined to be the age of the combatant
at time t. Cox {(5) gives the pdf of Y() as
fyg® = QF®IWBEx)+mtx)(1F®I, 0 < x <t
where § (t-x) = 1 if the first renewal time x exceeds {, and 6 (t-x) = 0, otherwise.
And the cdf as

t
Fygy © =§ o F* t-wm@)du, 0 < x <t
ty{t

where, F(t) is the cdf of the interfiring time. The expected value of the hazard
function is defined to be
EC(Y®) =§ Y@y, ax ®
Substituting r{t) = f{)/F° () into (3) yields
Er(r®) = L0 5y Wax )
Substituting (4) into (3) vields
Ber©) = {29 P08 E0nONUFE 6
Simplifying yields
EG®) = 0 +| f0omexdx

Which is well known renewal intensity function m(). Therefore, m(@) = Er({t)).



2.3 Superposition of Nonhomogeneous Poisson Preocesses

consider the superposition of L particular renewal processes at some time t.

Yy, (t)
1.
Y2 (t)
2.
ya(t)
3.
()
L.
Superposition
t t+ At
Figure-1 The Superposition of L Renewal Processes
Statement 1

let v, (t) be the backward recurrence time of the i® process at time t. Then the
following statements can be obtained. Then
PIN(t t+At) = 1 | n®.%0, - n® J =
r( 1) 1At iIiI‘ (1m0 AL +
r( v () JAtiliIz{l—r(Y;(t)]At} +

10 %O AT (r(Y0)A0 +

r{ v @® JAt I {1-rC ;) A

Summing the terms and aggregating the second and higher order terms yields

g:l'.r[Y;(t)]At + 0(AY).
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Therefore,

1RO, RO, - w®) = D HOA + oA,

PN, t+AL) =
PINGA+AD = 0 [ 7,0, 50, ~ w®) = 1—2::1 (3 @)AL + 0(AY,
PINGEFAD = 2 | 1,0, %0, ~ 1n®) = 0(AY, )

It is important to note that the above result depends upon the specific sample being

observed. Dividing and m_ﬂtiplying the sum in (5) gives the following :

) = Lol At + 0(AY),
< w®) = Lol At + 0(AY,

PIN({t t+AY) = 1 [ v;(), v,
PN t+AL) = 2 | Yl(t), Yz(t).
PIN(tt+AY = 0| v, ), v, - ()] = 0(AD)

Where

gil:r(yj ©)

R = S

If L is large enough, so that ;(_t; ~ E{r(Y))) we would have:
LEG(Y(®) AL + 0(AY),
FLEC(Y @) 1AL + 0(AD,

PIN{t t+A) = 11 »t), %0, - nl))

P[N(t,t+At) =2 l Yl(t). YZ(t), YL(t)]

PINGLt+AYD = 01 1), w0, - v®)) = 0(AY)
Statement 2
It is shown that E(r(Y{))) = m{). To show this in a more intuitive way consider
the following.

ME+AD-M®E = 0P, GLt+AD + 1P, GLt+AD +33 ip; Gt+AD 6
i=2

M) = EN()), N() = Number of renewals in (0, t), and
the probability of exactly j renewals

where,
P ¢ t+ Aty = PIN(, t+AD-N{)=j), (G.e..

in (¢ t+AD.
If the component renewal process has the property of orderliness, we have P; (tt+

At = 0(AY), 2, so that (6) becomes M({t+AH)-M({t) = mE)At+0(AY) = P, (t t+
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At +0(At), where mf{t) = dM(p)/dt.
Now we compute the P, (t, t+At) as the conditional expectation

Pt t+A) = PING+AD - NO=1 | YO=Y) {0)dr. )
However,
PING+AY - NO=1 | YO=T) = r(Y®IA+0(ALY). ®

So, substituting (8) into (7) vyields
t
D, (t,t+At)=E(r[Y(t)]]At+So oAty £,3)dy.
The integral, by the mean value theorem, is

S; 0(ALY) froMdy = 0(ALat)t=0(AD,

Where, 0 < a £ 1.

The minimum forward recurrence time, Y, of L i.i.d. Nonhomogeneous Poisson for-
ward recurrence processes times, X, can be shown to be P(Y=min(X, X, -, X, )
<y) = PY<y) = Fy(y), which is, due to the Lid. of the X, 's

TPL® > v) = PO ) ¥) = 1Fyp0).

Hence,

1-Fy®) = L~ F)
Again, because of the i.i.d. of the Xjs, for all i
F, (v = Fx(©)

Therefore, 1~ Fy(y) = (1 - Fx(s)) . Simplifying and rearranging

terms yields, Fy(y) = (1 - Fx (y)]L . By differentiating this with

respect to y, We get

£, =L - FxMI6G) . ©
Since the Nonhomogeneous Poisson process depends upon the time f, substituting 63

and (2) for the pdf and cdf into (9), the pdf of the minimum event time becomes

Y m@da)Pmrnen-{ 7 mwd

f, ity = L{1- (- exp{~g
Simplifying yields,

f, (i) = Lm(t+y)exp{-SI+YLm(u)du}
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Therefore, the minimum interfiring time of L Nonhomogeneous -Poisson processes at
time t may be comsidered by qs_iqg the following the {enewal .intensity fqpc_tion Lm(1),
where, m(t)=renewal intensity function evaluated at t. In a similar manner the minimum
interkill time of L Nonhomogeneous Poisson procééses at time t may be 6btained by

using the process with the following renewal intensity function LPy m(t), where Py =

probability of kill.

3. Analytical Development of Nonhomogeneous Poisson

Approximation

The Nonhomogeneous Poisson Processes model is significantly different from the
stochastic model in the execution of the combat 8realization. The individual combatant’
s process is no longer considered, however, the superposed whole process will be
modeled. Assuming the Lanchester square law of a combat realization as Dolansky
(7) Listed :

(1) Two sides, homogeneous forces for each side, are engaged in a combat The

rate of attrition may be different for each side.

(2) Each unit on either side is within weapon range of all units of the other side.

(3) Attrition-rate coefficients are constant.

(4) Each unit is informed about the location of the remaining opposing units so that

when a target is destroyed, fire may be immediately shifted to a new target.

(5) Fire is uniformly distributed over remaining units.

Let us define the notation we will throughout the remainder of this study as

follows :

a,(b,) : the initial number on side A(B) at time O,

a; (by) : breakpoint for side A(B), i.e., the number of side A(B) at time the
A(B) side loses,

A . number of survivors on side A at time f{,

B(t) : number of survivors on side B at time ¢,



P,ot) : P(A(t)=a, B{t)=b), a state probability function.

ma(t) : E(A(t)). expected value of Af(t),

mg (t) : E(B ®)). expected value of B(t),

34() : standard deviation of A,

() : standard deviation of B(t),

P() : probability i side win, i=A or B,

Tp . random variable, time duration of combat,
Ff,() : complementary distribution function of Ty,
#, ¢ expected value of Ty,

3, Standard deviation of Tp,

P,(Pg) : constant single shot kill probability of a combatant on side Afor B).
Ro(Rg) : Pu/up(Pg/p#g) . a combatant's kill rate on side Afor B).

1, (rg) : instantaneous kill rate at time t for a combatant's on side Af(or B).

We need to introduce interfiring intensity functions, 2,(t) for side A and 213(t) for

side B, in this model. Hence the intensity functions of interkilling process wil be P

a Aa(t) for side A and Py 2g(t) for side B. There are initially a, combatants on side
A and b, on the side B. The battle is continued until either side A or side B has

reached its. specified breakpoint (a; or by)

b
b

a¢ a

Figure-2 : Discrete State Space

Now we will turn to the analytical development of the Kolmogorov forward
equations, Which shows all the probabilistic evolution of the state of each side. A

state probability P,, (t) is defined as the probability of being at a general lattice point
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(a. b) shown in Figure-2 at time t.

The battle terminatiom point marked as * in the Figure-2 are called absorbing states
and all other states are called transient states. The stéte (a; , by ) can never be
reached. The characteristics of state probabilities are

* Initial condition P,, (0)=1

« Transient states P,, -+ 0 as time t — oo where a=a, a,1, a,2 - a+1 and

b=b,, by-l, b2, -, b1 .
+ Absorbing states P, (t) (or Pab,(t)) > 0 Where a=a, aj,l, a,2, -~ a+1 and b=b

o Dyl bg2, -, betl

a, by
+ Therefore, sum of the absorbing states 2] P, (t) + 22 P,,(t) — 1. as time ¢
a=a;+] b=b+1

- o,

The standard approach for representing the {ransient and nonstationary behavior of
this nonhomogeneous Poisson process s fo numerically integrate the time differential
difference equations representing the prebabilities of being in each of the discrete
states. This set of time derivatives are called the Kolmogorov forward equations and
are commonly used to analyze time varying behavior of queues. For a {a, , a; :b,
, by) nonhomogeneous Poisson process combat system the Kolmogorov forward

equations are :

for initial state
P t+AD = Py, () (aPais ) Al I Psls () AY
Rearranging terms, dividing by At, and letting At — 0, we get

APap, ®)  _

dt -P a‘,'b, (t) {aop oA A {t} + b.P BAB ®}

and
P t+A = Py ) {I-aPala (O At} {I-(b-1) Peip (1) At)
+ Paubo (t) aOPAK A (t.) At {l“bOPBX B (t) At}

hence this equation yields

AP ) _

5 Papat) @ Para®) + (b-1)Pplpgt) + P,y (DaPaiatt)}



Similarly, for a = a, and b; { b { b, -1

dPa,b (t)
dt

for af ( a ( a, and b = b,

= -Poo(t) @Pala®) + bPpip(t) + Pap®)aPaia(t)}

dP, (t

‘-Ebii)— = P, (1) @Pala®) + bPpip(t) + Payy (DbPprst)) .
for a; { a ( a, and b, { b { b,

dP;z(t)‘ = P, 1) @Piralt) + bPgAg®)} + Payp®)bPpip(t)

t Pasi®)aPuia@)

for a = a and by ( b £ b,

dP,, (1)
Z: L= -Pa‘+1b(t)bpg7\a(t)}
for ay (' a < a, and b = Iy
dPg, ()
__313{__ = P+ ()aPaka ()}

with initial conditions P,; (0) =1 and P,,(0) =0 for all absorbing states and transient

states.

The transient state probabilities are obtained by solving a system of Kolmogorov for-
ward equations déscribed above. However, since nonstationary analysis is indeed
mathematically intractable numerical methods have been applied in the literature. The
Runge-Kutta method with step width control, due to Verner, is the basis of a very
successful differential equation solving a subroutine named DVERK which is widely
available in subroutine libraries (Hull, Enright, and Jackson({14}). Verner's method, which
is calied Runge-Xutta-Verner fifth-sixth order, requires eight function evaluations per
step, and from these, two estimated values of function are obtained, one based on
a fifth order and another based on sixth order approximation. The method was
incorporated into the subroutine DVERK and disseminated by IMSL (15) Inc., Houston,

Texas.

3.1 Combat Figures of Merit

The state probabilities produce essentially all the information in a combat operation :
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(1) The means and variances of the survivors on both sides as a function of
time t,
a, b, 8 b, )
m,(t) = E(A()) =333 aPu(T) .mg(t) = E[B(T)) =333 bP,(t)
a=ab=b . a=ab=b
where P, {t) = 0 for any t. computing
8 b, 2, b,
E(A? (1)) =353 a%P,@® . E(B® ) =333 b P,
a=ab=b a=ab=b,

where again Pa{b,(t) = for any f{, so we can have

d.) =JERTDImME® . 65¢t) =EB*®JmEE .
(2) The expected value and standard deviation of Tp , the battle termination

time, are computed with commonly used integral equations
E(Tp ) =SOF%D(0 &t E(TD? ) = ZSOtF%D(t) dt.

Where

a, b,
FR@® = 22 20 Pi(®

® a=actl b=hi+1

Thus

B ) = 2|t 3T 3 PO

a=a+] b=by+1

(3) the probabilities that A wins, P{A), and B wins, P(B), are

b,
P(A) = lim . %‘.lPabr(t) P(B] = 1-P(A) = lim .o b?xp"‘b t)
a=ac+ =+

4, Results and Comparisons

The NPPA model developed in this study needs to have the appropriate interkilling
intensity functions for both sides to generate the interkilling times. The renewal density
functions is used for solving the Kolmogorov forward equations. The numerical in-
versioﬁ of the Laplace transformm has been applied to get 2,(A) and Zz()
(references (10, 13))

The verification of the model is done in two phases. First, all the transient state

and absorbing state probabilities are observed at any time t. The transient state



probabilities have to converge to =zero at time infinity and the absorbing state
probabilities should have nonzero probabilities at the end of the battle. Furthermore,
the sum of all the state probabilities must be equal to one at any time. The second
procedure of model verification involves couii)aring the output of the model with
simulation results provided by Gafarian, Harvey, Hong, and Kronauer [10] and Harvey
(11). Simulations were run for one million replications to ensure that the estimate of
all eight overall combat figures of merit were reliable. The relative difference between
the NPPA model and simulation output is used as a measure of the NPPA model's
veracity. Table-1 presents the values of the relative difference for the overall battle
measures between NPPA and simulation output. In both cases, the relative errors of

all eight parameters are in between 0% and .20%.

(@,=2, a=0, b,=2, b=0) (a,=5. a;=4, b,=5 b=4)

Figures of True Simulation Relative True Simulation Relative
Merit Value Estimate Error % Value Estimate Error %
E(T,) 9.1750 9.1899 -.162 1. 4666 1. 4664 .04
o(T, ] 6. 6750 6. 6840 -.135 1.2262 1. 2262 .399
E(A()) 1. 1059 1.1057 .018 4.6188 4.6183 . 000
o{A()) . 8927 . 8926 .01 . 4857 . 4857 . 000
E(B()) L5744 5744 . 000 4. 3812 4.3812 . 000
a(B () .8312 . 8313 - 012 . 4857 . 43857 . 000
P(a) . 6489 . 6489 . 000 .6188 .6188 . 000
P(B) . 3511 .3511 .000 .3812 . 3812 . 000

Table-1 Verification results of Erlang-2 interfiring time for both sides; Py=.10, p, =
1.00, Pg =150, #3=1.50, and 1,000,000 replications for simulation output.

To see how the approximation behaves when the time comes and to inplement the
NPPA model the several combats with different size of combatants were examined.

Three main factors come up with the efficiency of this NPPA model. These three

factors are :
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Factor 1 The sizes of breakpoint for both sides.

A better approximation can be achieved when the breakpoints (a; and b, ) are near
the initial number of combatants (a, of b) . The superposed process may be getting
away from a nonhomogeneous poisson process due to the less number of remaining
combatants on both sides as time goes on. Table-2 shows the mean and maximum
relative differences between three models (stochastic Lanchester (SL) versus NPPA and
Stochastic Lanchester (SL) versus Exponential Lanchester{EL)) for eight overall combat
measures. The mean relative differences are decreased as we expected when the both
initial and breakpoint are increased. However, it is noted that there is a significant
difference between SL and EL although the baftle sizes are large. This says something

about the EL model as some researchers already have mentioned. (references (2), (9],

(103, (13))

(a,. a,) (,. b,) SL versus NPPA SL versus EL
(10, 0) (10, 0) (‘X,‘faaxn;wm) ?’7_820)% 1312%8?
20, 10) (20, 10) 7 59 50, 1)
(30, 20) (30, 20) (fzsj Z,-g) 53: 23
(40, 30) (40, 30) é] 32) (ggﬁ %
(50, 40) (50, 40) éj 2; (13&.67%)

Table-2 Relative differences between three models (SL, EL, and NPPA):. Erlang-2

interfiring random variable on both sides: uy =1.00, P,=.50, s =1.80, Py

=.90.
Factor 2 Total number of states.

The total number of states is (a,a;+1) (byb+1)-1 . For the {fixed number of
breakpoints on both sides a, and b, are inportani elements to obtain a good

approximation. As we increase the initial number of combatants on both sides the
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relative differences are getting larger. Table-3 shows this

set of combat sizes.

phenomena for four different

(av a,) (®,. b,,) SL versus NPPA SL versus EL
(15, 10) (15, 10) ) ) o e
20, 10) (20, 10) 0.55) 6.4
(30. 10) (30, 10) ¢ 6779
(40. 10) 40, 10) 70 .70

Table-3 Relative differences between three models (SL, EL, and NPPA): Erlang-2

interfiring random variable on both sides; s, =1.00, P, =.50,

=.90.

Factor 3 Battle duration

1 =1.80, Py

For a given set of combat sizes the NPPA model produces a better approximation

as the battle termination time is getting longer since the battle is conducted with more

combatants on both sides.

Table-4 presents the effectiveness of the battle duration.

((z" g:; SL versus NPPA SL vérsus EL
B

(1.00, .10 (Mean) .81 % 517 %
(1.80, .18 (Maximum) (2. 60) (8.92)

(1. 00, .30) 2.10 13. 14
(1.80, .54) (5.79) (29. 22)
1.00, .50) 314 19.70

(1. 80, .90) (7.53) (50. 41)

Table-4 Relative differences between three models (SL, EL, and NPPA): Erlang-2

interfiring random variable on both sides;

=10).

(a, =20,

a,=10) and b,=20, b

Finally, the NPPA model requires much less CPU time than the actual SL model

or EL model. Table-5 contains some computation times on VAX/VMS system. For the
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actual SL model we ran one million replications on each battle to get precise output

values. It was found that the NPPA is fast and produces very accurate results.

‘ SL Model ' NPPA Model
@, ag) (b, be) Hrs : Min : Sec Hrs : Min : Sec
(10, 0) (10, 0 11 : 16 : 08 00 : 05 : 34
(20, 10) (20, 10) 00 : 24 : 55 00 : 05 : 37
(30, 200 (30, 20) 01 : 16 : 19 00 : 10 : 22
(40, 30) (40, 30) 02 : 03 : 19 00 : 16 : 18
(50, 40) (50, 40) 04 © 09 : 31 00 : 22 : 19

Table-5 Comparison for CPU times between two models : the SL results are based
on the simulation of 1,000,000 replications. ¢, =1.00, P, =.10, #z=1.80Pg

=.50 and Erlang-2 interfiring time random variables.

5. Conclusions

The mam view of the research was the development of the efficient numerical
approximation to the many-on-many stochastic square law combat model. The
nonhomogeneous Poisson process is considered as an alternative method for the
approximation. Given any arbitrary distribution for the interfiring time random variables
for both sides the exact interkilling renewal intensity is applied for solving the system
of Kolmogorov forward equations. The Runge-Kuits method is used for solving these
equations to obtain the state probabilities simultaneously. The efficiency turned out to
be very excellent and computer time could be saved when it was compared with the
simulation model. There are three factors are observed in the proposed NPPA model
First, a better approximation can be achieved when the breakpoints are near the initial
number of combatants. Second, for the fixed number of breakpoints on both sides
the initial sizes of combatant, a, and b, , are inportant elements to obtain a good

approximation. And third, for a given set of combat sizes the NPPA model produces
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a better approximation as the battle termination time is getting longer since the baftle
is conducted with more combatants on both sides. Some experimental results show that
it is very important for the combat operators to note the differences between actual
Stochastic Lanchester (SL) model and the traditional Exponential Lanchester (EL) model.
Furthermore, the Deterministic Lanchester (DL) model should not be considered any
more. The results of many previous works support this statement. The NPPA model
may be replaced with SL model because it is extremely difficult to find the solution

analytically and is time consuming to simulate ii.
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