• Title/Summary/Keyword: Stirrup

Search Result 159, Processing Time 0.019 seconds

Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup (전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석)

  • Kim Sung Wook;Han Sang Muk;Kang Su Tae;Kong Jeong Shick;Kang Jun Hyung;Jun Sang Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips (이 방향 탄소섬유 스트립을 사용하여 보강된 콘크리트 보의 거동에 대한 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.30-36
    • /
    • 2018
  • Researches on strengthening and rehabilitation are important since structural capacity is degraded by deterioration or damage of structural members. An effective strengthening scheme such as an externally bonded Carbon Fiber Reinforced Polymers (CFRP) can improve the structural performance of a concrete structure in a cost-effective way. Therefore, many experimental studies on strengthening methods have been widely carried out. In regards to the shear strengthening of a concrete beam, variables of the experimental studies were the amount of CFRP, the angle of the strip, the width of the strip, and the interaction between the materials. However, there are insufficient researches on bi-directional CFRP layout compared to the previous researches. In this study, a total of ten concrete beams were designed and tested to evaluate the shear strengthening effect using CFRP strips. The effectiveness of strengthening was investigated based on the shear contribution of materials, strain distribution of stirrup, and the maximum shear capacity of specimens.

Shear Strength Estimation Model for Reinforced Concrete Members (철근콘크리트 부재의 전단강도 산정모델)

  • Lee, Deuckhang;Han, Sun-Jin;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • This study presents a shear strength estimation model, in which the shear failure of a reinforced concrete (RC) member is assumed to be governed by the flexure-shear mechanism. Two shear demand curves and corresponding potential capacity curves for cracked tension and uncracked compression zones are derived, for which the bond mechanism developed between reinforcing bars and surrounding concrete is considered in flexural analysis. The shear crack concentration factor is also addressed to consider the so-called size effect induced in large RC members. In addition,unlike exising methods, a new formulation was addressed to consider the interaction between the shear contributions of concrete and stirrup. To verify the proposed method, an extensive shear database was established, and it appeared that the proposed method can capture the shear strengths of the collected test specimens regardless of their material properties, geometrical features, presence of stirrups, and bond characteristics.

Behaviour of ultra-high strength concrete encased steel columns subject to ISO-834 fire

  • Du, Yong;Zhou, Huikai;Jiang, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.121-139
    • /
    • 2021
  • Ultra-high strength concrete (UHSC) encased steel columns are receiving growing interest in high-rise buildings owing to their economic and architectural advantages. However, UHSC encased steel columns are not covered by the modern fire safety design code. A total of 14 fire tests are conducted on UHSC (120 MPa) encased steel columns under constant axial loads and exposed to ISO-834 standard fire. The effect of load ratio, slenderness, stirrup spacing, cross-section size and concrete cover to core steel on the fire resistance and failure mode of the specimens are investigated. The applicability of the tabulated method in EC4 (EN 1994-1-2-2005) and regression formula in Chinese code (DBJ/T 15-81-2011) to fire resistance of UHSC encased steel columns are checked. Generally, the test results reveal that the vertical displacement-heating time curves can be divided into two phases, i.e. thermal expansion and shortening to failure. It is found that the fire resistance of column specimens increases with the increase of the cross-section size and concrete cover to core steel, but decreases with the increase of the load ratio and slenderness. The EC4 method overestimates the fire resistance up to 186% (220 min), while the Chinese code underestimates it down to 49%. The Chinese code has a better agreement than EC4 with the test results since the former considers the effect of the load ratio, slenderness, cross section size directly in its empirical formula. To estimate the fire resistance precisely can improve the economy of structural fire design of ultra-high strength concrete encased steel columns.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Cumulative damage in RC frame buildings - The 2017 Mexico earthquake case

  • Leonardo M. Massone;Diego Aceituno;Julian Carrillo
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.13-36
    • /
    • 2023
  • The Puebla-Morelos Earthquake (Mw 7.1) occurred in Mexico in 2017 causing 44 buildings to collapse in Mexico City. This work evaluates the non-linear response of a 6-story reinforced concrete (RC) frame prototype model with masonry infill walls on upper floors. The prototype model was designed using provisions prescribed before 1985 and was subjected to seismic excitations recorded during the earthquakes of 1985 and 2017 in different places in Mexico City. The building response was assessed through a damage index (DI) that considers low-cycle fatigue of the steel reinforcement in columns of the first floor, where the steel was modeled including buckling as was observed in cases after the 2017 earthquake. Isocurves were generated with 72 seismic records in Mexico City representing the level of iso-demand on the structure. These isocurves were compared with the location of 16 collapsed (first-floor column failure) building cases consistent with the prototype model. The isocurves for a value greater than 1 demarcate the location where fatigue failure was expected, which is consistent with the location of 2 of the 16 cases studied. However, a slight increase in axial load (5%) or decrease in column cross-section (5%) had a significant detrimental effect on the cumulated damage, increasing the intensity of the isocurves and achieving congruence with 9 of the 16 cases, and having the other 7 cases less than 2 km away. Including column special detailing (tight stirrup spacing and confined concrete) was the variable with the greatest impact to control the cumulated damage, which was consistent with the absence of severe damage in buildings built in the 70s and 80s.

Development of Optimal Design Technique of RC Beam using Multi-Agent Reinforcement Learning (다중 에이전트 강화학습을 이용한 RC보 최적설계 기술개발)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.29-36
    • /
    • 2023
  • Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.

Dynamic Behavior of Pretensioned Concrete Member during Detensioning (긴장재 절단에 따른 프리텐션 부재의 동적 거동 고찰)

  • Kim, Jangho;Mun, Do Young;Ji, Goangseup;Kim, Gyuseon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.747-756
    • /
    • 2008
  • The purpose of this paper is to investigate the effect of the important parameters on the transfer length during the dynamic flame cutting of tendon experimentally. The considered parameters were strand diameter, concrete cover thickness, stirrup, debonding strand and release method. Ten pretensioned concete beam specimens were cast and tested. Time history curves for the axial strain of tendon were measured by electrical resistance strain gauges mounted on the strands. Experimental results indicated that large dynamic shock effects occurred near cut-end during the sudden release. The prestressing forces are dependent on the parameters above considered. The ratio of residual prestressing forces of 12.7 mm strands is greater than 15.2 mm strands. Using debonding strand and gradual release are more efficient for applying prestressing forces.

Shear performance of reinforced concrete beams with rubber as form of fiber from waste tire

  • Ali Serdar Ecemis;Emrah Madenci;Memduh Karalar;Sabry Fayed;Sabry Fayed;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.337-349
    • /
    • 2024
  • The growing quantity of tires and building trash piling up in landfills poses a serious threat to the stability of the ecosystem. Researchers are exploring ways to reduce and use such byproducts of the construction industry in an effort to promote greener building practices. Thus, using recycled crumb rubber from scrap tires in concrete manufacturing is important for the industry's long-term viability. This study examines the proportion of waste rubber in fiber form, specifically at weight percentages of 5%, 10%, and 15%. Moreover, the study examines the shear behavior of reinforced concrete beams. A total of twelve RC beam specimens, each sized 100 mm by 150 mm by 1000 mm (w × d × L), were constructed and positioned to the test. Various mixtures were designed with different levels of scrap tire rubber content (0%, 5%, 10%, and 15%) and Stirrup Vol. Ratio (2.10, 2.80, and 3.53) in reinforced concrete beams. The findings indicate that the inclusion of scrap rubber in concrete leads to a decrease in both the mechanical characteristics and weight of the material. This is mostly attributed to the lower strength and stiffness of the rubberized concrete. Furthermore, estimations generated by a variety of design codes were examined alongside the obtained data. In order to make a comparison between the estimates provided by the different codes such as ACI 318-14, CEB-FIB and Iranian national building codes, a calculation was done to determine the ratio of the experimental shear strength to the anticipated shear strength for each code.

Study on the Shear Strengthening of Concrete Beams with Wire Rope Clamped by Bolts (볼트 체결된 와이어 로프를 이용한 RC 보의 전단보강에 대한 연구)

  • Kim, Sun-Young;Song, Jin-Gyu;Lee, Young-Uk;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.283-290
    • /
    • 2006
  • The paper describes m experimental study on the shear strengthening of concrete beams with exposed wire rope. The strengthening method is using the mechanical bolting of wire rope tensioned on the exterior of beam section. There are two shear strengthening types. The first is closed type wrapped beam section with wire rope like as closed stirrup. The second is U type tensioned at the anchor located in the side of beam section. The main parameters of specimens are strengthening spacings of wire rope with 150, 200, and 250mm for the closed and U type respectively. The shear span ratio of specimens applied by 3-point loading is 4. The results showed that the ultimate shear strength and ductility of strengthened beams increased significantly compared with non-strengthened beams. Especially, the strengthening effect of closed type was very preferable to U type. Therefore, the shear strengthening method with wire rope is very reasonable in view of repair and rehabilitation of beams.