DOI QR코드

DOI QR Code

Shear performance of reinforced concrete beams with rubber as form of fiber from waste tire

  • Ali Serdar Ecemis (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Emrah Madenci (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Memduh Karalar (Department of Civil Engineering, Zonguldak Bulent Ecevit University) ;
  • Sabry Fayed (Department of Civil Engineering, Faculty of Engineering, Kafrelsheikh University) ;
  • Sabry Fayed (Department of Civil Engineering, Faculty of Engineering, Kafrelsheikh University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Necmettin Erbakan University)
  • Received : 2023.12.19
  • Accepted : 2024.05.02
  • Published : 2024.05.10

Abstract

The growing quantity of tires and building trash piling up in landfills poses a serious threat to the stability of the ecosystem. Researchers are exploring ways to reduce and use such byproducts of the construction industry in an effort to promote greener building practices. Thus, using recycled crumb rubber from scrap tires in concrete manufacturing is important for the industry's long-term viability. This study examines the proportion of waste rubber in fiber form, specifically at weight percentages of 5%, 10%, and 15%. Moreover, the study examines the shear behavior of reinforced concrete beams. A total of twelve RC beam specimens, each sized 100 mm by 150 mm by 1000 mm (w × d × L), were constructed and positioned to the test. Various mixtures were designed with different levels of scrap tire rubber content (0%, 5%, 10%, and 15%) and Stirrup Vol. Ratio (2.10, 2.80, and 3.53) in reinforced concrete beams. The findings indicate that the inclusion of scrap rubber in concrete leads to a decrease in both the mechanical characteristics and weight of the material. This is mostly attributed to the lower strength and stiffness of the rubberized concrete. Furthermore, estimations generated by a variety of design codes were examined alongside the obtained data. In order to make a comparison between the estimates provided by the different codes such as ACI 318-14, CEB-FIB and Iranian national building codes, a calculation was done to determine the ratio of the experimental shear strength to the anticipated shear strength for each code.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Kingdom of Saudi Arabia for funding this work through Large Groups RGP2/563/44.

References

  1. Akinyele, J.O., Salim R.W. and Kupolati, W.K. (2016), "Production of lightweight concrete from waste tire rubber crumb", Eng. Struct. Technol., 8(3), 108-116. https://doi.org/10.3846/2029882X.2016.1209727. 
  2. Al Adwan, J. and Alzubi, Y. (2023), "Rubber-based solid waste management as a partial replacement of aggregates in concrete: Advances and recent trends", AIP Conference Proceedings, AIP Publishing. 
  3. Alasmari, H.A., Bakar, B. and Noaman, A. (2019), "A comparative study on the flexural behaviour of rubberized and hybrid rubberized reinforced concrete beams", Civil Eng. J., 5(5), 1052-1067. 
  4. Assaggaf, R., Maslehuddin, M., Al-Osta, M.A., Al-Dulaijan, S.U. and Ahmad, S. (2022), "Properties and sustainability of treated crumb rubber concrete", J. Build. Eng., 51, 104250. https://doi.org/10.1016/j.jobe.2022.104250. 
  5. ASTM, C. (1916). 94, Standard Specification for Ready Mixed Concrete, American Society for Testing and Materials, West Conshohocken, PA. 
  6. Bompa, D. and Elghazouli, A. (2020), "Stress-strain response and practical design expressions for FRP-confined recycled tyre rubber concrete", Construct. Build. Mater., 237, 117633. https://doi.org/10.1016/j.conbuildmat.2019.117633. 
  7. Chen, C.S. and Fung, C.P. (2006), "Nonlinear vibration of orthotropic plates with initial stresses on a two-parameter elastic foundation", J. Reinforced Plastics Compos., 25(3), 283-301. https://doi.org/10.1177/0731684406058284. 
  8. Chen, C., Chen, X., Ning, Y. and Zhang, W. (2023), "Experimental study of crack characteristics of self-compacting rubberized concrete under four-point bending based on acoustic emission technique", J. Mater. Civil Eng., 35(5), 04023080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004735. 
  9. Chen, D. and Pan, Y. (1986), "Formulation of reissner-mindlin moderately-thick/thin plate bending elements", Comput. Mech., 86, 49-54. https://doi.org/10.1007/978-4-431-68042-0_2. 
  10. Chen, Z., Liang, Y., Lin, Y. and Cai, J. (2022), "Recycling of waste tire rubber as aggregate in impact-resistant engineered cementitious composites", Construct. Build. Mater., 359, 129477. https://doi.org/10.1016/j.conbuildmat.2022.129477. 
  11. Chong, B., Othman, R., Ramadhansyah, P., Doh, S. and Li, X. (2021), "Mathematical modelling of concrete compressive strength with waste tire rubber as fine aggregate", J. Mech. Eng. Sci., 15(3), 8344-8355. 
  12. Elchalakani, M., Aly, T. and Abu-Aisheh, E. (2016), "Mechanical properties of rubberised concrete for road side barriers", Australian J. Civil Eng., 14(1), 1-12. https://doi.org/10.1080/14488353.2015.1092631. 
  13. Fadiel, A.A., Mohammed, N.S., Abu-Lebdeh, T., Munteanu, I.S., Niculae, E. and Petrescu, F.I.T. (2023), "A comprehensive evaluation of the mechanical properties of rubberized concrete", J. Compos. Sci., 7(3), 129. https://doi.org/10.3390/jcs7030129. 
  14. Feng, W., Liu, F., Yang, F., Jing, L., Li, L., Li, H. and Chen, L. (2021), "Compressive behaviour and fragment size distribution model for failure mode prediction of rubber concrete under impact loads", Construct. Build. Mater., 273, 121767. https://doi.org/10.1016/j.conbuildmat.2020.121767. 
  15. Ganjian, E., Khorami, M. and Maghsoudi, A.A. (2009), "Scrap-tyre-rubber replacement for aggregate and filler in concrete", Construct. Build. Mater., 23(5), 1828-1836. https://doi.org/10.1016/j.conbuildmat.2008.09.020. 
  16. Gerges, N.N., Issa, C.A., Khalil, N.J., Abdul Khalek, L., Abdo, S. and Abdulwahab, Y. (2023), "Flexural capacity of eco-friendly reinforced concrete beams", Sci. Reports, 13(1), 20142. https://doi.org/10.1038/s41598-023-47283-6. 
  17. Hall, M.R. and Najim, K.B. (2014), "Structural behaviour and durability of steel-reinforced structural Plain/Self-Compacting Rubberised Concrete (PRC/SCRC)", Construct. Build. Mater., 73, 490-497. https://doi.org/10.1016/j.conbuildmat.2014.09.063. 
  18. Hasanuddin, I., Mawardi, I., Nurdin, N. and Jaya, R.P. (2023), "Evaluation of properties of hybrid laminated composites with different fiber layers based on Coir/Al2O3 reinforced composites for structural application", Results Eng., 17, 100948. https://doi.org/10.1016/j.rineng.2023.100948. 
  19. Hernandez-Olivares, F., Barluenga, G., Bollati, M. and Witoszek, B. (2002), "Static and dynamic behaviour of recycled tyre rubber-filled concrete", Cement Concrete Res., 32(10), 1587-1596. https://doi.org/10.1016/S0008-8846(02)00833-5. 
  20. Hossain, F.Z., Pal, A., Ahmed, K.S., Bediwy, A. and Alam, M.S. (2023), "Shear behavior of polypropylene fiber-reinforced concrete beams containing recycled aggregate and crumb rubber", J. Cleaner Product., 412, 137370. https://doi.org/10.1016/j.jclepro.2023.137370. 
  21. Huang, Q. and Chen, F. (2021), "Design and performance of ultrathin overlay epoxy-rubber concrete", Adv. Mater. Sci. Eng., 2021, 1-9. https://doi.org/10.1155/2021/9231893. 
  22. Islam, M.M.U., Li, J., Wu, Y.F., Roychand, R. and Saberian, M. (2022), "Design and strength optimization method for the production of structural lightweight concrete: An experimental investigation for the complete replacement of conventional coarse aggregates by waste rubber particles", Resources, Conserv. Recycling, 184, 106390. https://doi.org/10.1016/j.resconrec.2022.106390. 
  23. Ismail, M.K. and Hassan, A.A. (2016), "Performance of full-scale self-consolidating rubberized concrete beams in flexure", ACI Mater. J., 113(2), 207-218. 
  24. Ismail, M.K. and Hassan, A.A. (2017), "An experimental study on flexural behaviour of large-scale concrete beams incorporating crumb rubber and steel fibres", Eng. Struct., 145, 97-108. https://doi.org/10.1016/j.engstruct.2017.05.018. 
  25. Ismail, M.K. and Hassan, A.A. (2017), "Shear behaviour of largescale rubberized concrete beams reinforced with steel fibres", Construct. Build. Mater., 140, 43-57. https://doi.org/10.1016/j.conbuildmat.2017.02.109. 
  26. Karalar, M., Ozturk, H. and Ozkilic, Y.O. (2023), "Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber", Steel Compos. Struct., 48(1), 43-57. https://doi.org/10.12989/scs.2023.48.1.043. 
  27. Kazmi, S.M.S., Munir, M.J. and Wu, Y.-F. (2021), "Application of waste tire rubber and recycled aggregates in concrete products: A new compression casting approach", Resources, Conserv. Recycling, 167, 105353. https://doi.org/10.1016/j.resconrec.2020.105353. 
  28. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015. 
  29. Kianifar, M.E. and Ahmadi, E. (2023), "Use of waste tire rubber alkali-activated-based mortars in repair of concrete structures", Int. J. Struct. Construct. Eng., 17(1), 68-74. https://publications.waset.org/10012930/pdf.  10012930/pdf
  30. kumar Khari, A. and Rai, A. (2023), "Effect of crumb rubber by partial replacement on compressive strength and flexural strength of concrete", Int. J. Innov. Res. Eng. Manage., 10(3), 9-14. https://doi.org/10.55524/ijirem.2023.10.3.3. 
  31. Lashari, A.R., Ali, Y., Buller, A.S. and Memon, N.A. (2023), "Effects of partial replacement of fine aggregates with crumb rubber on skid resistance and mechanical properties of cement concrete pavements", Int. J. Pavement Eng., 24(2), 2077940. https://doi.org/10.1080/10298436.2022.2077940. 
  32. Li, L., Ruan, S. and Zeng, L. (2014), "Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles", Construct. Build. Mater., 70, 291-308. https://doi.org/10.1016/j.conbuildmat.2014.07.105. 
  33. Li, Z., Ma, M., Liu, K. and Jiang, B. (2023), "Performance of rubber-concrete composite periodic barriers applied in attenuating ground vibrations induced by metro trains", Eng. Struct., 285, 116027. https://doi.org/10.1016/j.engstruct.2023.116027. 
  34. Liu, F., Zheng, W., Li, L., Feng, W. and Ning, G. (2013), "Mechanical and fatigue performance of rubber concrete", Construct. Build. Mater., 47, 711-719. https://doi.org/10.1016/j.conbuildmat.2013.05.055. 
  35. Liu, M., Lu, J., Jiang, W. and Ming, P. (2023), "Study on fatigue damage and fatigue crack propagation of rubber concrete", J. Build. Eng., 65, 105718. https://doi.org/10.1016/j.jobe.2022.105718. 
  36. Lv, J., Du, Q., Zhou, T., He, Z. and Li, K. (2019), "Fresh and mechanical properties of self-compacting rubber lightweight aggregate concrete and corresponding mortar", Adv. Mater. Sci. Eng., 2019. https://doi.org/10.1155/2019/8372547. 
  37. Mawardi, I., Nurdin, Fakhriza, Rizal, S., Aprilia, S., Faisal, M. and Jaya, R.P. (2023), "Optimization of particle size and ramie fiber ratio on hybrid bio panel production from oil palm trunk as thermal insulation materials", J. Ecologic. Eng., 24(2). 
  38. Mohammed, B.S., Hossain K.M.A., Swee, J.T.E., Wong, G. and Abdullahi, M. (2012), "Properties of crumb rubber hollow concrete block", J. Cleaner Product., 23(1), 57-67. https://doi.org/10.1016/j.jclepro.2011.10.035. 
  39. Mokhatar, S., Mutalib, N., Zabiddin, M., Hadipramana, J. and Hakim, J. (2023), "Strength performance of reinforced concrete beam containing waste tire rubber and local waste material", IOP Conference Series: Earth and Environmental Science. 
  40. Najim, K. and Hall, M. (2010), "A review of the fresh/hardened properties and applications for plain-(PRC) and self-compacting rubberised concrete (SCRC)", Construct. Build. Mater., 24(11), 2043-2051. https://doi.org/10.1016/j.conbuildmat.2010.04.056. 
  41. Navarro, F., Partal, P., Martinez-Boza, F. and Gallegos, C. (2005), "Influence of crumb rubber concentration on the rheological behavior of a crumb rubber modified bitumen", Energy Fuels, 19(5), 1984-1990. https://doi.org/10.1021/ef049699a. 
  42. Neville, A.M. (1995), Properties of Concrete, Longman London.
  43. Noaman, A.T., Abu Bakar, B.H. and Md. Akil, H. (2017), "Investigation on the mechanical properties of rubberized steel fiber concrete", Eng. Struct. Technol., 9(2), 79-92. https://doi.org/10.3846/2029882X.2017.1309301. 
  44. Ramdani, S., Guettala, A., Benmalek, M. and Aguiar, J.B. (2019), "Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder", J. Build. Eng., 21, 302-311. https://doi.org/10.1016/j.jobe.2018.11.003. 
  45. Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interface Sci., 12, 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c. 
  46. Sharaky, I., Seleem, M. and Elamary, A.S. (2023), "Minimizing the crumb rubber effects on the flexural behaviour of the layered RC beams cast using rubberized concrete with or without recycled tire steel fibers", Construct. Build. Mater., 400, 132503. https://doi.org/10.1016/j.conbuildmat.2023.132503. 
  47. Sukontasukkul, P. and Chaikaew, C. (2006), "Properties of concrete pedestrian block mixed with crumb rubber", Construct. Build. Mater., 20(7), 450-457. https://doi.org/10.1016/j.conbuildmat.2005.01.040. 
  48. Topcu, I.B. and Bilir, T. (2009), "Analysis of rubberized concrete as a Three-phase composite material", J. Compos. Mater., 43(11), 1251-1263. https://doi.org/10.1177/0021998308104226. 
  49. Topcu, I.B. and Demir, A. (2007), "Durability of rubberized mortar and concrete", J. Mater. Civil Eng., 19(2), 173-178. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(173). 
  50. Toutanji, H.A. (1996), "The use of rubber tire particles in concrete to replace mineral aggregates", Cement Concrete Compos., 18(2), 135-139. https://doi.org/10.1016/0958-9465(95)00010-0. 
  51. TS EN 934-2 (2011), Kimyasal Katkilar-Beton, H. v. g. G.-B. B. K. K., Gerekler, Uygunluk, GGaretleme ve Etiketleme. Ankara. 
  52. Zhang, J., Yu, Z., Sun, X., Zhang, G. and Pan, P. (2021), "Experimental study and failure mechanism analysis of rubber fiber concrete under the compression-shear combined action", Adv. Mater. Sci. Eng., 2021, 1-16. https://doi.org/10.1155/2021/5554257. 
  53. Zheng, L., Huo, X.S. and Yuan, Y. (2008), "Experimental investigation on dynamic properties of rubberized concrete", Construct. Build. Mater., 22(5), 939-947. https://doi.org/10.1016/j.conbuildmat.2007.03.005. 
  54. Zhu, X., Chen, X., Tian, H. and Ning, Y. (2023), "Experimental and numerical investigation on fracture characteristics of self-compacting concrete mixed with waste rubber particles", J. Cleaner Product., 412, 137386. https://doi.org/10.1016/j.jclepro.2023.137386. 
  55. Zsutty, T. (1971), "Shear strength prediction for separate catagories of simple beam tests", In Journal Proceedings, 68(2), 138-143. https://doi.org/10.14359/11300.