• 제목/요약/키워드: Stirling number

검색결과 30건 처리시간 0.022초

LU-FACTORIZATION OF THE SQUARE-TYPE MATRIX OF THE STIRLING MATRIX

  • Ji-Hwan Jung
    • East Asian mathematical journal
    • /
    • 제39권5호
    • /
    • pp.523-528
    • /
    • 2023
  • Let Sn = [S(i, j)]1≤i,j≤n and S*n = [S(i + j, j)]1≤i,j≤n where S(i, j) is the Stirling number of the second kind. Choi and Jo [On the determinants of the square-type Stirling matrix and Bell matrix, Int. J. Math. Math. Sci. 2021] obtained the diagonal entries of matrix U in the LU-factorization of S*n for calculating the determinant of S*n, where L = Sn. In this paper, we compute the all entries of U in the LU-factorization of matrix S*n. This implies the identities related to Stirling numbers of both kinds.

Bernoulli and Euler Polynomials in Two Variables

  • Claudio Pita-Ruiz
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.133-159
    • /
    • 2024
  • In a previous work we studied generalized Stirling numbers of the second kind S(a2,b2,p2)a1,b1 (p1, k), where a1, a2, b1, b2 are given complex numbers, a1, a2 ≠ 0, and p1, p2 are non-negative integers given. In this work we use these generalized Stirling numbers to define Bernoulli polynomials in two variables Bp1,p2 (x1, x2), and Euler polynomials in two variables Ep1p2 (x1, x2). By using results for S(1,x2,p2)1,x1 (p1, k), we obtain generalizations, to the bivariate case, of some well-known properties from the standard case, as addition formulas, difference equations and sums of powers. We obtain some identities for bivariate Bernoulli and Euler polynomials, and some generalizations, to the bivariate case, of several known identities for Bernoulli and Euler numbers and polynomials of the standard case.

AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND

  • Kim, Y.H.;Jung, H.Y.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제32권3_4호
    • /
    • pp.465-474
    • /
    • 2014
  • Many mathematicians have studied various relations beween Euler number $E_n$, Bernoulli number $B_n$ and Genocchi number $G_n$ (see [1-18]). They have found numerous important applications in number theory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim, M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our aim is introducing and investigating an extension term of generalized Euler polynomials. We also obtain some identities and relations involving the Euler numbers and the Euler polynomials, the Genocchi numbers and Genocchi polynomials.

스터얼링 기관의 근사 출력 계산법 (An Approximate Analysis Method to Predict Power Output Characteristics of Stilting Engine)

  • 김태한;장익주;이시민
    • Journal of Biosystems Engineering
    • /
    • 제20권3호
    • /
    • pp.205-216
    • /
    • 1995
  • A fast and inexpensive approximate analysis method to predict power output characteristics of the Stilting engines in a preliminary design stage was investigated. In basic equations proposed by Walker, typical temperatures of working fluids in expansion and compression spaces were treated as those of working fluids in heater and cooler respectively. While the temperature of working fluid in the expansion space was actually lower than that of working fluid in the heater, the temperature of working fluid in the compression space was higher than that of working fluids in the cooler. In this paper, the working fluid temperature of expansion space was treated as lower than the heater temperature and that of compression space was treated as higher than the cooler temperature. Also, according to them, the power output characteristics of the Stirling engine were evaluated with respect to the GPU-3 and 4-215 Stilting engines. The following conclusions were drawn from the analysis. 1. Using the available experimental data from the GPU-3 Stirling engine, it was shown that the approximate analysis predicts the brake power with a maximum error of 19 percent at 1, 000rpm and with a minimum error of 3 percent at 2, 000rpm. 2. The approximate analysis data which for the GPU-3 Stirling engine were much closer to the experimental data than those of adiabatic 2nd order and 3rd order analysis within 1, 500rpm to 2, 500rpm. 3. The approximate analysis data which for the GPU-3 and 4-215 Stilting engines were much closer to the experimental data than those of the Beal number analysis.

  • PDF

3차원 연소장에서의 베타 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구 (NUMERICAL ANALYSIS TO DESIGN HIGH TEMPERATURE HEAT EXCHANGER OF BETA TYPE STIRLING ENGINE IN 3-D COMBUSTION FIELD)

  • 강석훈;김혁주;정대헌
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.56-61
    • /
    • 2011
  • Numerical study is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver, FLUENT. The Fin-tube type of heat exchanger is designed as a reference model by considering the type of engine which is ${\beta}$-configuration. To find the optimal design of heat exchanger in heat transfer capacity numerical calculation is conducted by changing the shape, the number, and material of reference model in three-dimensional combustion field. Adjusted one-way constant velocity of working fluid that is helium is considered as the representative velocity of oscillating flow. The optimal design of heat exchanger considering the heat transfer capability is suggested by using the calculation results.

핀-튜브 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구 (NUMERICAL ANALYSIS TO DESIGN THE FIN-TUBE TYPE HEAT EXCHANGER OF STIRLING ENGINE)

  • 강석훈;정대헌;김혁주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.163-166
    • /
    • 2010
  • Numerical analysis is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver FLUENT. The fin-tube type of heat exchanger numerical calculation is conducted by changing the shape, number and material of fin shape of working fluid channel, etc in three-dimensional combustion field. Adjusted one-way constant velocity is used as the representative velocity of oscillating flow. The optimum design of heat exchanger considering the heat trasfer capability is suggested by using the calculation results.

  • PDF

A STUDY OF SUM OF DIVISOR FUNCTIONS AND STIRLING NUMBER OF THE FIRST KIND DERIVED FROM LIOUVILLE FUNCTIONS

  • KIM, DAEYEOUL;KIM, SO EUN;SO, JI SUK
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.435-446
    • /
    • 2018
  • Using the theory of combinatoric convolution sums, we establish some arithmetic identities involving Liouville functions and restricted divisor functions. We also prove some relations involving restricted divisor functions and Stirling numbers of the first kind for divisor functions.

TM발전변환기 개발을 위한 저온도차 스털링엔진(MM-7)의 성능실측 연구 (An Experimental Study on LTD Stirling Engine (MM-7) for the Development of TM Electric Conversion System)

  • 김영민;콴첸;천원기
    • 에너지공학
    • /
    • 제25권1호
    • /
    • pp.9-14
    • /
    • 2016
  • 본 연구는 주위의 온도보다 약 $20{\sim}30^{\circ}C$ 밖에 높지 않은 저온폐열을 활용하기 위한 TM(Thermal to Mechanical) 발전변환기의 개발을 위하여 저온도차 스털링엔진의 하나인 MM-7에 대한 성능실측 연구를 수행하였다. 스털링엔진의 흡열부와 방열부의 온도차에 대한 토크 및 분당회전수를 측정하고 이를 바탕으로 MM-7 엔진의 출력을 산출하였으며, 이를 통하여 효율적인 TM발전변환기의 개발 방안을 모색하였다.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.