• 제목/요약/키워드: Stiffness coefficient matrix

검색결과 66건 처리시간 0.028초

유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석 (Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method)

  • 조재혁;김현욱;최영휴
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

동특성 변화를 이용한 감쇠 구조물의 손상예측 (Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

전달강성계수법에 의한 직선형 구조물의 시간 이력응답 해석알고리즘에 관한 연구 (A Study on the Analysis Algorithm of Time Historical Response of Straight-line Structure by the Transfer Stiffness Coefficient Method)

  • 문덕홍;강현석;최명수
    • 동력기계공학회지
    • /
    • 제3권1호
    • /
    • pp.74-79
    • /
    • 1999
  • This paper describes formulation for algorithm of time historical response analysis of vibration for straight-line structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark method. And this present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the straight-line structure containing crooked, tree type system. The validity of the present method compared with the transfer matrix method and the Finite Element Method for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

감도해석을 이용한 구조물의 손상위치 및 크기해석 (Analysis of a Structural Damage Detection Using Sensitivity Analysis)

  • 이정윤
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.50-55
    • /
    • 2003
  • This study proposed the analysis of damage detection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The present approach allows the use of composite data which consist of eigenvalues and eigenvectors. The suggested method is applied to examples of a cantilever and 3 degree of freedom system by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

동특성 변화를 이용한 구조물의 손상 탐지 해석 (Analysis of a Structural Damage Detection using the Change of Dynamic Characteristics)

  • 이정윤;이정우;이준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.760-763
    • /
    • 2003
  • This study proposed the analysis of damage defection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

  • PDF

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

강성계수의 전달을 이용한 골조구조물의 정적해석 (Static Analysis of Frame Structures Using Transfer of Stiffness Coefficient)

  • 문덕홍;최명수;정하용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.287-294
    • /
    • 2001
  • In static analysis of a variety of structures, the matrix method of structural analysis is the most widely used and powerful analysis method. However, this method has drawback requiring high-performance computers with many memory units and fast processing units in the case of analyzing complex and large structures accurately. Therefore, it's very difficult to analyze these structures accurately in personal computers. For overcoming the drawback of the matrix method of structural analysis, authors suggest transfer stiffness coefficient method(TSCM). The TSCM is very suitable to a personal computer because the concept of the TSCM is based on the transfer of the stiffness coefficient for an analytical structure. In this paper, the static analysis algorithm for frame structures is formulated by the TSCM. We confirm the validity of the proposed method through the compare of computation results by the TSCM and the NASTRAN.

  • PDF

강성계수의 전달을 이용한 골조구조물의 정적해석 (Static Analysis of Frame Structures Using Transfer of Stiffness Coefficient)

  • 최명수;문덕홍;정하용
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.9-18
    • /
    • 2003
  • 파양한 구조물의 정적해석에서 매트릭스구조해석법은 가상 폭넓게 사용되고 있는 강력한 해석기법이다. 그러나 이 방법으로 많은 수의 자유도를 갖는 구조물을 정확히 해석하기 위해서는 많은 계산 메모리와 빠른 처리 능력을 갖춘 고성능 컴퓨터를 필요로하는 취약점이 있다. 따라서 매트릭스구조해석법으로 많은 수의 자유노를 갖는 구조물을 퍼스널 컴퓨터 상에서 정확히 해석하기에는 곤란한 경우가 많다. 매트릭스구조해석법치 이러한 취약점을 극복하기 위하여, 저자들은 전달강성계수법을 제안한다. 전달강성계수법은 해석대상 구조물에 대한 강성계수의 전달에 기본 개념을 두고 있으am로 퍼스널 컴퓨터에 매우 적합한 해석기법이다. 본 논문에서는 골조추조물에 대한 정적해석 알고리듬을 전달강성계수법으로 정식화한다. 그리고 전달강성계수법, NASTRAN, 매트릭스구조해석법 그리고 해석해에 의한 계산 결과들의 비교를 통해 전달강성계수법의 유효성을 확인한다.

영향계수의 전달에 의한 2중 원통형 셸의 자유진동해석 (Free Vibration Analysis of Double Cylindrical Shells Using Transfer of Influence Coefficent)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제21권5호
    • /
    • pp.48-54
    • /
    • 2017
  • The transfer influence coefficient method which is an vibration analysis algorithm based on the transfer of influence coefficient is applied to the free vibration analysis of double cylindrical shells. After the computational programs for the free vibration analysis of double cylindrical shells were made using the transfer influence coefficient method and the transfer matrix method, we compared the results using the transfer influence coefficient method with those by the transfer matrix method. The transfer influence coefficient method provided the good computational results in the free vibration analysis of double cylindrical shells. In particular, The results of the transfer influence coefficient method are superior to those of the transfer matrix method when the stiffness of internal springs connecting a inside cylindrical shell and a outside cylindrical shell is very large.