• Title/Summary/Keyword: Stiffness characteristics

Search Result 2,228, Processing Time 0.039 seconds

Effects of Flow Rate and Discharge Pressure with Compressing Spring in Non-diaphragm Type Stem of Water Pressure Reducing Valve (급수용 감압밸브의 비다이어프램 스템에서 압축스프링에 따른 유량 및 토출압력 효과)

  • Byeon, Jae-Uk;Kim, Chi-Ho;Park, Seong-Hwan;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2019
  • The pressure reducing valve for water is controlled by the load of the compression spring and the force of the fluid acting on the diaphragm of the stem. Repeated upward and downward reciprocation of the pressure-reducing valve stem damages the diaphragm, resulting in leakage. In this study, we designed a stem without a diaphragm and adjusted the stiffness of the compressing spring. In order to select the spring stiffness, springs offering a stiffness of -20%, -10%, 0%, and 10% with respect to the stiffness of the compression spring attached to the existing pressure reducing valve stiffness. A prototype for the pressure reducing valve was fabricated and the pressure change was evaluated for the target static pressure (6 bar) by testing the pressure characteristics after mounting the modified stem and each compression spring. Evaluation of the pressure characteristics was carried out using ASSE 1003 and KS B 6153. In addition, the flow rates were compared by internal flow analysis of the conventional pressure reducing valve and the pressure reducing valve using the modified stems, and the flow analysis was performed using Solidworks flow simulation 2018. The spring stiffness was constantly discharged at the target static pressure of 3.793 kgf/mm, and the flow rate was increased by about 15% compared with the conventional pressure reducing valve.

On analysis of nonlinear impedance force control for robot manipulators (로봇의 비선형 임피던스 힘제어에 대한 연구)

  • Jung, Seul;Lee, Ji-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.560-563
    • /
    • 1997
  • The conventional impedance control has been known to have the following problems: it has lack of specifying force directly and unknown environment stiffness has to be known priori in order to specify the reference trajectory. In this paper, new impedance force control that can control a desired force directly under unknown stiffness is proposed. A new nonlinear impedance function is developed based on estimation of unknown stiffness from force and position measurements. The nonlinear characteristics of the proposed impedance function are analyzed based on unknown environment position. Simulation studies with robot manipulator are carried out to test analytical results.

  • PDF

A Numerical Study of Stiffness in Point Reactor Kinetics

  • Jaegwon Yoo;H. S. Shin;Park, W. S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.102-107
    • /
    • 1997
  • A stiffness in a dynamical system is numerically studied to investigate a sensitivity of a reactor to the delayed neutron spectra with the Doppler feedback. To test numerical procedure, we adopted a case of a reactivity accident in a point reactor model. We found that the stiffness is sensitive to a reactivity insertion rate and the delayed neutron spectra in the Doppler feedback phase. Our numerical results show that global reactor characteristics are not very sensitive to the delayed neutron spectra even though their instantaneous ones are sensitive. We present the time evolution of each precursor group explicitly.

  • PDF

An Analysis of Dynamic Characteristics of Tilting Pad Thrust Bearings (틸팅 패드 추력베어링의 동특성 해석)

  • 김종수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.91-100
    • /
    • 1997
  • In this paper the linearzed stiffness and damping coefficients of tilting pad thrust bearing are calculated by the perturbation method. The coefficients are obtained for a wide range of pivot positions. The effects of exciting frequency and pad mass on stiffness and damping coefficients are investigated. Critical frequencies due to the tilting motions of the pad are presented and are shown to be strongly influenced by the pivot position and pad mass.

  • PDF

Digital Optimal Contorl of Servomotor System Considering Torsional Vibration Characteristics (비틀림 진동특성을 고려한 서어보모터계의 디지털 최적제어)

  • Jo, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.52-60
    • /
    • 1989
  • In order to control the transient torsional vibration of rotational shaft system, the torsional stiffness of it has been taken into account in modelling the plant. In this paper the observer and controller has been designed in two ways. One is to consider the torsional stiffness and the other is to idealize the rotational shaft as rigid body. The third order observer considering torsional stiffness shows stable response on computer simulation. When the observer is designed on assumption of the rotational shaft being rigid body, the reduced order observer shows stable response whereas the full order observer shows unstable response.

  • PDF

Analysis of the Conical Air Bearings with two Circumferential Grooves (2 열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;김우정;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.51-56
    • /
    • 1993
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and champing coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

  • PDF

Analysis of the Conical Air Bearings with two Circumferential Grooves (2열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 1994
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and damping coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

Nonlinear Analysis Model of RC Shear Wall Building (철근 콘크리트 벽식 구조물의 비선형 해석모델)

  • 정일영;이영욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.141-148
    • /
    • 1993
  • In this paper, TVLEM is selected for the shear wall model which was proposed by Kabeyasawa and the characteristics of spring models composing TVLEM was studied. In axial stiffness spring model, the horizontal displacements when Kabeyasawa model and simple axial stiffness hysteresis model were used, were closely similar. When the large shear-displacement was occured, stiffness degrading model was more adquate to the shear wall modelling than OOHM. Also for the purpose of modelling the horizontally continuous wall, the seperational method for TVLEM was used. The results of nonlinear analysis by this method were closely similar to experimental results .

  • PDF

An Analysis of Dynamic Characteristics of Tilling Pad Thrust Bearings (틸팅 패드 추력베어링의 동특성 해석)

  • 김종수
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.33-41
    • /
    • 1997
  • In this paper the linearized stiffness and damping coefficients of tilting pad thrust bearing are calculated by the perturbation method. The coefficients are obtained for a wide range of pivot positions. The effects of exciting frequency and pad mass on stiffness and damping coefficients are investigated. Critical frequencies due to the tilting motions of the pad are presented and are shown to be strongly influenced by the pivot position and the pad mass.

A Study on the Unloading Stiffness of Instrumented Indentation Tests (압입시험에서 하중제하곡선의 강성율에 관한 고찰)

  • 이병섭;이호진;이봉상
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.168-171
    • /
    • 2003
  • Instrumented indentation tests have been used for estimating material properties. In order to analyze deformation characteristics with various factors, the unloading stiffness should be properly determined from the elastic behaviour. In general, the unloading stiffness is obtained from shifted power functions fitting to indentation unloading curves. But, the functions give often a poor representation of actual data. In this study, control conditions for fitting unloading curves by shifted power functions were investigated. The current efforts may provide useful information about unloading process and valid unloading stiffness.

  • PDF