• Title/Summary/Keyword: Stereotactic Radiosurgery (SRS)

Search Result 65, Processing Time 0.021 seconds

Development of Independent Target Approximation by Auto-computation of 3-D Distribution Units for Stereotactic Radiosurgery (정위적 방사선 수술시 3차원적 공간상 단위분포들의 자동계산법에 의한 간접적 병소 근사화 방법의 개발)

  • Choi Kyoung Sik;Oh Seung Jong;Lee Jeong Woo;Kim Jeung Kee;Suh Tae Suk;Choe Bo Young;Kim Moon Chan;Chung Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The stereotactic radiosurgery (SRS) describes a method of delivering a high dose of radiation to a small tar-get volume in the brain, generally in a single fraction, while the dose delivered to the surrounding normal tissue should be minimized. To perform automatic plan of the SRS, a new method of multi-isocenter/shot linear accelerator (linac) and gamma knife (GK) radiosurgery treatment plan was developed, based on a physical lattice structure in target. The optimal radiosurgical plan had been constructed by many beam parameters in a linear accelerator or gamma knife-based radiation therapy. In this work, an isocenter/shot was modeled as a sphere, which is equal to the circular collimator/helmet hole size because the dimension of the 50% isodose level in the dose profile is similar to its size. In a computer-aided system, it accomplished first an automatic arrangement of multi-isocenter/shot considering two parameters such as positions and collimator/helmet sizes for each isocenter/shot. Simultaneously, an irregularly shaped target was approximated by cubic structures through computation of voxel units. The treatment planning method by the technique was evaluated as a dose distribution by dose volume histograms, dose conformity, and dose homogeneity to targets. For irregularly shaped targets, the new method performed optimal multi-isocenter packing, and it only took a few seconds in a computer-aided system. The targets were included in a more than 50% isodose curve. The dose conformity was ordinarily acceptable levels and the dose homogeneity was always less than 2.0, satisfying for various targets referred to Radiation Therapy Oncology Group (RTOG) SRS criteria. In conclusion, this approach by physical lattice structure could be a useful radiosurgical plan without restrictions in the various tumor shapes and the different modality techniques such as linac and GK for SRS.

  • PDF

Clinical Experience of LINAC-based Stereotactic Radiosurgery for Angiographically Occult Vascular Malformations (혈관조영상 잠재혈관기형에 대한 선형가속기형 정위방사선수술의 임상경험)

  • Kim Dae Yong;Ahn Yong Chan;Lee Jung Il;Nam Do-Hyun;Lim Do Hoon;Lee Jeong Eun;Yeo Inhwan;Huh Seung Jae;Noh Young Joo;Shin Seong Soo;Hong Seung-Chyul;Kim Jong Hyun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Purpose : To establish the role of stereotactic radiosurgery (SRS) for the treatment of patients with angiographically occult vascular malformation (AOVM). Materials and Methods : Eleven patients (12 lesions) with AOVM were treated with linear accelerator-based SRS between February 1995 and December 1999. A magnetic resonance imaging of each patients showed well-circumscribed vascular lesion with reticulated core of heterogeneous signal intensity and peripheral rim of low signal intensity. SRS were peformed with the median peripheral dose of 16 Gy (range 13~25). A single isocenter was used with median collimator size of 14 mm (range 8~20) diameter. Results : With a median follow-up period of 42 months (range 12~56), rebleeding occurred in 3 AOVMS at 5, 6 and 12 months after SRS but no further bleeding did. Two patients experienced radiation-induced necrosis associated with permanent neurologic deficit and one patient showed transient edema of increased 72 signal intensity. Conclusion : SRS may be effective for the prevention of rebleeding in AOVM located in surgically inaccessible region of the brain. Careful consideration should be needed in the decision of case selection and dose prescription because the incidence of radiation-induced complications is too high to be accepted.

  • PDF

Development of Ideal Model Based Optimization Procedure with Heuristic Knowledge (정위적 방사선 수술에서의 이상표적모델과 경험적 지식을 활용한 수술계획 최적화 방법 개발)

  • 오승종;송주영;최경식;김문찬;이태규;서태석
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.84-93
    • /
    • 2004
  • Stereotactic radiosurgery (SRS) is a technique that delivers a high dose to a target legion and a low dose to a critical organ through only one or a few irradiations. For this purpose, many mathematical methods for optimization have been proposed. There are some limitations to using these methods: the long calculation time and difficulty in finding a unique solution due to different tumor shapes. In this study, many clinical target shapes were examined to find a typical pattern of tumor shapes from which some possible ideal geometrical shapes, such as spheres, cylinders, cones or a combination, are assumed to approximate real tumor shapes. Using the arrangement of multiple isocenters, optimum variables, such as isocenter positions or collimator size, were determined. A database was formed from these results. The optimization procedure consisted of the following steps: Any shape of tumor was first assumed to an ideal model through a geometry comparison algorithm, then optimum variables for ideal geometry chosen from the predetermined database, followed by a final adjustment of the optimum parameters using the real tumor shape. Although the result of applying the database to other patients was not superior to the result of optimization in each case, it can be acceptable as a plan starling point.

  • PDF

Accuracy Evaluation of CyberKnife $Synchrony^{TM}$ Respiratory Tracking System Using Phantom (Phantom을 이용한 사이버나이프 $Synchrony^{TM}$ 호흡 추적장치의 정확성 평가)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Lim, Chang-Seon;Kim, Chong-Yeal
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • This study was conducted to evaluate the accuracy of CyberKnife $Synchrony^{TM}$ respiratory tracking system which was applied to Stereotactic Radiosurgery (SRS) for moving tumors in chest and abdomen with breathing motion. For accurate evaluation, gold fiducial marks were implanted into a moving phantom. The moving phantom was a cube imbedding an acryl ball as a target. The acryl ball was prescribed to 20 Gy at 70% of isodose curve in a virtual treatment and radiochromic films were inserted into the acryl ball for dose verification and tracking accuracy evaluation. The evaluation of position tracking consists of two parts: fiducial mark tracking in a stationary phantom and $Synchrony^{TM}$ respiratory tracking in a moving phantom. Each measurement was done in three directions and was repeated to 5 times. Range of position error was 0.1957 mm to 0.6520 mm in the stationary phantom and 0.4405 mm to 0.7665 mm in the moving phantom. Average position error was 0.3926 mm and 0.5673 mm in the stationary phantom and the moving phantom respectively. This study evaluates the accuracy of CyberKnife $Synchrony^{TM}$ Respiratory tracking system, and confirms the usefulness when it's used for Stereotactic Radiosurgery of body organs.

Hippocampal Sparing Whole Brain Radiotherapy and Integrated Simultaneous Boost vs Stereotactic Radiosurgery Boost: A Comparative Dosimetric Planning Study

  • Cheah, Soon Keat;Matthews, Thomas;Teh, Bin Sing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4233-4235
    • /
    • 2016
  • Background: Whole brain radiotherapy (WBRT) and stereotactic radiosurgery were frequently used to palliate patients with brain metastases. It remains controversial which modality or combination of therapy is superior especially in the setting of limited number of brain metastases. The availability of newer medical therapy that improves survival highlighted the importance of reducing long term radiation toxicity associated with WBRT. In this study, we aim to demonstrate the hippocampal sparing technique with whole brain and integrated simultaneous boost Materials and Methods: Planning data from 10 patients with 1-5 brain metastases treated with SRS were identified. Based on the contouring guideline from RTOG atlas, we identified and contoured the hippocampus with 5mm isocentric expansion to form the hippocampal avoidance structure. The plan was to deliver hippocampal sparing whole brain radiotherapy (HSWBRT) of 30 Gy in 10 fractions and simultaneous boost to metastatic lesions of 30 Gy in 10 fractions each. Results: The PTV, hippocampus and hippocampal avoidance volumes ranges between 1.00 - 39.00 cc., 2.50 - 5.30 cc and 26.47 - 36.30 cc respectively. The mean hippocampus dose for the HSWBRT and HSWBRT and SIB plans was 8.06 Gy and 12.47 respectively. The max dose of optic nerve, optic chiasm and brainstem were kept below acceptable range of 37.5 Gy. Conclusions: The findings from this dosimetric study demonstrated the feasibility and safety of treating limited brain metastases with HSWBRT and SIB. It is possible to achieve the best of both worlds by combining HSWBRT and SIB to achieve maximal local intracranial control while maintaining as low a dose as possible to the hippocampus thereby preserving memory and quality of life.

Simulation Study for the Distortion Correction of Digital Angiographic Images using Geometric Transformation (디지털 혈관 조영상의 기하학적 왜곡 보정을 위한 모의 실험 연구)

  • 진호상;신동훈;허순녕;곽철은;최보영;이형구;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.365-373
    • /
    • 2002
  • Accurate localization of target lesion is required to protect normal peripheral tissue and irradiate exactly to tumors in stereotactic radiosurgery(SRS). Digital angiography is one of the most effective diagnostic tools to detect and identify the target tumors. However, it shows pincushion distortion due to the characteristics of the image intensifier. We have implemented a simulation study for the correction of distortion using the geometric transformation. Phantom images were produced transformation. In conclusion, the geometric transformation could effectively be used for the pincushion distortion of image intensifier and there was no significant different between two methods indicating 2% correction error from the ideal image in all cases.

Clinical Report of 46 Intracranial Tumors with LINAC Based Stereotactic Radiosurgery (선형가속기를 이용한 뇌종양 46예의 뇌정위다방향방사선치료 성적)

  • Yoon Sei C;Suh Tge S;Kim Sung W;Kang Ki M;Kim Yun S;Choi Byung O;Jang Hong S;Choi Kyo H;Kim Moon C;Shinn Kyung S
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.241-247
    • /
    • 1993
  • Between July 1988 and December 1992, we treated 45 patients who had deep seated inoperable or residual and/or recurrent intracranial tumors using LINAC based stereotactic radiosurgery at the Department of Therapeutic Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College. Treated intracranial tumors included pituitary tumors (n=15), acoustic neurinomas (n=8), meningiomas (n=7), gliomas (n=6), craniopharyngiomas (n=4), pinealomas (n=3), hemangioblastomas (n=2), and solitary metastatic tumor from lung cancer (n=1). The dimension of treatment field varied from 0.23 to 42.88 $cm^3\;(mean;\;7.26\;cm^3)$. The maximum tumor doses ranging from 5 to 35.5 Gy (mean; 29.9 Gy) were given, and depended on patients' age, target volume, location of lesion and previous history of irradiation. There were 22 male and 23 female patients. The age was varied from 5 to 74 years of age (a median age; 43 years). The mean duration of follow-up was 35 months (2~55 months). To date, 18 $(39.1\%)$ of 46 intracranial tumors treated with SRS showed absent or decrease of the tumor by serial follow-up CT and/or MRI and 16 $(34.8\%)$ were stationary, e.g. growth arrest. From the view point of the clinical aspects, 34 $(73.9\%)$ of 46 tumors were considered improved status, that is, alive with no evidence of active tumor and 8 $(17.4\%)$ of them were stable, alive with disease but no deterioration as compared with before SRS. Although there showed slight increase of the tumor in size according to follow-up imagings of 4 cases (pituitary tumor 1, acoustic neurinomas 2, pinealoma 1), they still represented clinically stable status. Clinically, two $(4.4\%)$ Patients who were anaplastic astrocytoma (n=1) and metastatic brain tumor (n=1) were worsened following SRS treatment. So far, no serious complications were found after treatment. The minor degree headache which could be relieved by steroid or analgesics and transient focal hair loss were observed in a few cases. There should be meticulous long term follow-up inall cases.

  • PDF

LINAC-based Stereotactic Radiosurgery for Meningiomas (수막종에 대한 선형가속기형 정위방사선수술)

  • Shin Seong Soo;Kim Dae Yong;Ahn Yong Chan;Lee Jung Il;Nam Do-Hyun;Lim Do Hoon;Huh Seung Jae;Yeo Inhwan J;Shin Hyung Jin;Park Kwan;Kim BoKyoung;Kim Jong Hyun
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.87-94
    • /
    • 2001
  • Purpose : To evaluate the role of LINAC-based stereotactic radiosurgery (SRS) in the management of meningiomas, we reviewed clinical response, image response, neurological deficits for patients treated at our institution. Methods and materials : Between February 1995 and December 1999, twenty-six patients were treated with SRS. Seven patients had undergone prior resection. Nineteen patients received SRS as the initial treatment. There were 7 male and 19 female patients. The median age was 51 years (range, $14\~67\;years$). At least one clinical symptom presented at the time of SRS in 17 patients and cranial neuropathy was seen in 7 patients. The median tumor volume was $4.7\;cm^3\;(range,\;0.7\~16.5\;m^3)$. The mean marginal dose was 15 Gy (range, $10\~20\;Gy$), delivered to the $80\%$ isodose surface (range, $46\~90\%$). The median clinical and imaging follow-up periods were 27 months (range, 1-71 months) and 25 months (range, $1\~52\;months$), respectively. Results : Of 14 patients who had clinical follow-up of one year or longer, thirteen patients $(93\%)$ were improved clinically at follow-up examination. Clinical symptom worsened in one patient at 4 months after SRS as a result of intratumoral edema, who underwent surgical resection at 7 months. OF 14 patients who had radiologic follow-up of one year or longer, tumor volume decreased in 7 patients $(50\%)$ at a median of 11 months (range, $6\~25\;months$), remained stable in 6 patients $(43\%)$, and increased in one patient $(7\%)$, who underwent surgical resection at 44 months. New radiation-induced neurological deficits developed in six patients $(23\%)$. Five patients $(19\%)$ had transient neurological deficits, completely resolved by conservative treatment including steroid therapy. Radiation-induced brain necrosis developed in one patient $(3.8\%)$ at 9 months after SRS who followed by surgical resection of tumor and necrotic tissue. Conclusions : LINAC-based SRS proves to be an effective and safe management strategy for small to moderate sized meningiomas, inoperable, residual, and recurrent, but long-term follow-up will be necessary to fully evaluate its efficacy. To reduce the radiation-induced neurological deficit for large size meningioma and/or in the proximity of critical and neural structure, more delicate treatment planning and optimal decision of radiation dose will be necessary.

  • PDF

Evaluation of Dosimetric Characteristics of a Double-focused Dynamic Micro-Multileaf Collimator (DMLC) (이중으로 집중된 동적 미세 다엽콜리메이터의 선량학적 특성 평가)

  • Kim, Ae Ran;Seo, Jae-Hyuk;Shin, Hun-Joo;Park, Hyeong Wook;Lee, Ki Woong;Lee, Jae Choon;Kim, Shin-Wook;Kim, Ji Na;Park, Hyeli;Lee, Heui-Kwan;Kang, Young-Nam
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.223-228
    • /
    • 2015
  • Double-focused micro-Multileaf Collimator (${\mu}MLC$) is able to create radiation fields having sharper dose gradients at the field edges than common MLC. Therefore, ${\mu}MLC$ has been used for the stereotactic radiosurgery (SRS) and Stereotactic Radiotherapy (SRT). We evaluated the dosimetric characteristics of a doublefocused Dynamic-${\mu}MLC$ (DMLC) attached to the Elekta Synergy linear accelerator. For this study, the dosimetric parameters including, Percent Depth Dose (PDD), Leaf leakage and penumbra, have been measured by using of the radiochromic films (GafChromic EBT2), EDGE diode detector and three-dimensional water phantom. All datas were measured on 6 MV x-ray. As a result, The DMLC shows transmission below to 1% and because of double-focused construction of the DMLC, the penumbras of fields with DMLC are independent from the field sizes. In this paper, the resulting dosimetric evaluations proved the applicability of the DMLC attached to the Elekta Synergy linear accelerator.

A Comparison Study with the Vatiation of Isocenter and Collimator in Stereotactic Radiosurgery (방사선 수술시 Isocenter, 콜리메이터 변수에 따른 선량 분포 비교연구)

  • 오승종;박정훈;곽철은;이형구;최보영;이태규;김문찬;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.129-134
    • /
    • 2002
  • The radiosurgery is planned that prescribed dose was irradiated to tumor for obtaining expected remedial value in stereotactic radiosurgery. The planning for many irregular tumor shape requires long computation time and skilled planners. Due to the rapid development in computer power recently, many optimization methods using computer has been proposed, although the practical method is still trial and error type of plan. In this study, many beam variables were considered and many tumor shapes were assumed cylinderical ideal models. Then, beam variables that covered the target within 50% isodose curve were searched, the result was compared and analysed. The beam variables considered were isocenter separation distance, number of isocenters and collimator size. Dose distributions obtained with these variables were analysed by dose volume histogram(DVH) and dose profile at orthogonal plane. According to the results compared, the use of more isocenters than specified isocenter dosen't improve DVH and dose profile but only increases complexity of plan. The best result of DVH and dose profile are obtainedwhen isocenter separation was 1.0-1.2 in using same number of isocenter.

  • PDF