• Title/Summary/Keyword: Stereolithography system

Search Result 77, Processing Time 0.024 seconds

A Study on the Manufacture and the Performance Evaluation of Stereolithography System (쾌속 조형시스템의 제작 및 성능평가에 관한 연구)

  • Kang, Won-Joo;Kim, Jun-An;Lee, Seok-Hee;Paik, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.19-25
    • /
    • 1999
  • This paper addresses a development work of a SLA apparatus on laboratory basis. The SLA test machine is composed of optical, movement, curing and control subsystems. Optical part is performed by a He-Cd laser with mirror combination and mechanical movement is achieved by X-Y table. The developed system is evaluated by several test runs, and shows a good precision capability in forming a basic part. The technique used in this work can be extended to replace the high technology transfer cost of commercial RP machine.

  • PDF

Layout Planning for Stereolithography Parts using 3D Collision Detection Algorithm (3차원 충돌탐지 알고리듬을 이용한 광조형물의 최적배치 알고리듬 개발)

  • Kim, Boo-Young;Lee, Seok-Hee;Kim, Ho-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1546-1554
    • /
    • 2003
  • Efficient layout in a fixed work volume reduces build time when multiple parts are built at once in stereolithography systems. An efficient algorithm is developed for 3D layout planning. And it reduces build time and increases efficiency of SLA system. Genetic algorithm is implemented to locate as many parts as possible in the fixed work volume. A 3D collision detection algorithm, k-DOPs Tree, is implemented for the fast evaluation of a layout plan.

Rapid Prototyping System을 위한 형상정보 변환절차

  • Lee, U-Jong;Lee, Yong-Han;Hong, Yu-Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.1
    • /
    • pp.63-80
    • /
    • 1992
  • The concept of rapid prototyping intended for a significant reduction in cost and lead time becomes even more practical with the recent development of various equipments to make the concept concrete. For the purpose of real application of commercially available SLA(stereolithography apparatus), this paper is intended to develop the standard conversion procedure from CAD data to the input data for SLA. While the procedure presented in this paper is based on CAD system "CATIA" and SLA of 3D systems, Inc., which are being used in authors' company DAEWOO Motor Co., Ltd., the basic concept of this paper can be applied to any other CAD systems and machines of using stereolithography process. The algorithm presented in this paper is classified into two stages-node sampling and triangulation. First of all, point data are sampled through the node sampling procedure, and then these are triangulated so that the input data for SLA operation is finally generated. The suggested method is devised in a way to meet the input requirements of SLA and more importantly consume less computation time and generate less number of input data for SLA.

  • PDF

Accuracy of provisional crowns made using stereolithography apparatus and subtractive technique

  • Kang, Seen-Young;Park, Jung-Hyun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.354-360
    • /
    • 2018
  • PURPOSE. To compare and analyze trueness and precision of provisional crowns made using stereolithography apparatus and subtractive technology. MATERIALS AND METHODS. Digital impressions were made using a master model and an intraoral scanner and the crowns were designed with CAD software; in total, 22 crowns were produced. After superimposing CAD design data and scan data using a 3D program, quantitative and qualitative data were obtained for analysis of trueness and precision. Statistical analysis was performed using normality test combined with Levene test for equal variance analysis and independent sample t-test. Type 1 error was set at 0.05. RESULTS. Trueness for the outer and inner surfaces of the SLA crown (SLAC) were $49.6{\pm}9.3{\mu}m$ and $22.5{\pm}5.1{\mu}m$, respectively, and those of the subtractive crown (SUBC) were $31.8{\pm}7.5{\mu}m$ and $14.6{\pm}1.2{\mu}m$, respectively. Precision values for the outer and inner surfaces of the SLAC were $18.7{\pm}6.2{\mu}m$ and $26.9{\pm}8.5{\mu}m$, and those of the SUBC were $25.4{\pm}3.1{\mu}m$ and $13.8{\pm}0.6{\mu}m$, respectively. Trueness values for the outer and inner surfaces of the SLAC and SUBC showed statistically significant differences (P<.001). Precision for the inner surface showed significance (P<.03), whereas that for the outer surface showed no significance (P<.58). CONCLUSION. The study demonstrates that provisional crowns produced by subtractive technology are superior to crowns fabricated by stereolithography in terms of accuracy.

Development of bone scaffold using HA(Hydroxyapatite) nano powder (HA(Hydroxyapatite) 나노 입자를 이용한 bone scaffold의 개발)

  • Kim J.Y.;Lee S.J.;Lee J.W.;Kim Shin-Yoon;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.159-160
    • /
    • 2006
  • A novel approach to the manufacture of biocompatible ceramic scaffold for tissue engineering using micro-stereolithography system is introduced. Micro-stereolithography is a newly proposed technology that enables to make a 3D micro structure. The 3D micro structures made by this technology can have accurate and complex shape within a few micron error. Therefore, the application based on this technology can vary greatly in nano-bio fields. Recently, tissue-engineering techniques have been regarded as alternative candidate to treat patients with serious bone defects. So many techniques to design and fabricate 3D scaffolds have been developed. But the imperfection of scaffold such as random pore size and porosity causes a limitation in developing optimum scaffold. So scaffold development with controllable pore size and fully interconnected shape have been needed for a more progress in tissue engineering. In this paper, bone scaffold was developed by applying the micro-stereolithography to the mold technology. The scaffold material used was HA(Hydroxyapatite) nano powder. HA is a type of calcium phosphate ceramic with similar characteristic to human inorganic bone component. The bone scaffold made by HA is expected, in the near future, to be an efficient therapy for bone defect.

  • PDF

Development of a Multi-material Stereolithography System (다중재료 광조형장치 개발)

  • Kim, Ho-Chan;Choi, Jae-Won;Wicker, Ryan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.135-141
    • /
    • 2010
  • Researchers continue to explore possibilities for expanding additive manufacturing (AM) technologies into direct product manufacturing. One limitation is in the materials available for use in AM that can meet the needs of end-use applications. Stereolithography (SL) is an AM technology well known for its precision and high quality surface finish capabilities. SL builds parts by selectively crosslinking or solidifying photo-curable liquid resins, and the resin industry has been continuously developing new resins with improved performance characteristics. This paper introduces a unique SL machine that can fabricate parts out of multiple SL materials. The technology is based on using multiple vats positioned on a rotating vat carousel that contain different photo-curable materials. To change the material during the process, the build platform is raised out of the current vat, a new vat with a different material is rotated under the platform, and the platform is submerged into the new vat so that the new material can be used. This paper introduces a new vat exchange mechanism, cleaning process, recoating process, resin leveling mechanism and process planning technologies for the implementation of multiple material SL. An overview of the system framework is provided and the system integration and control software is described. In addition, several multiple material test parts are designed, fabricated, and described.

Determining Variables of Fabrication for Stereolithograpy (유전자 알고리즘을 이용한 광조형장치의 작업변수 결정)

  • 전근수;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.910-913
    • /
    • 2000
  • In this research we investigate geometric issues involved while using a particular rapid prototyping system, called Stereolithography(SLA). SLA create prototypes layer by layer, each layer being formed by scanning a laser beam across the x, y surface of a vat of liquid monomer mix. The performance of SLA is influenced by orientation and layer thickness of designed fabrication. The number of layer and the area needed support is influenced by the orientation and layer thickness of designed fabrication. The step influence and volume error is influenced by slice thickness. We minimize the support are, the number of layer and cusp height. These variables of fabrication is minimized using genetic algorithm. The time for genetic algorithm is as little as we can accept. So we calculate support area and cusp height simply.

  • PDF

Selection of Build Orientation for Reducing Surface Roughness with Stereolithography Parts (광조형물의 표면 거칠기 저감을 위한 성형방향의 선정)

  • 안대건;김호찬;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.137-140
    • /
    • 1997
  • In general, stereolithography parts is not suitable for master pattern. Because of its bad surface roughness. Therefore, To reduce roughness it requires post-process that is depending on user skill and takes long time to do. This study aims to develop an expert system which can select an optimal build orientation, reduce roughness and shorten post-processing time. Genetic Algorithm was introduced for optimization. A simplified computation model was developed for real-time response. For accurate roughness estimation, mterpolation of experimental data was implemented.

  • PDF

Experiment of Turbine Blade Hot Forging Process using Model Material and SLA Prototype Die Set (모델재료와 SLA 시금형을 이용한 터빈블레이드 열간단조공정의 모사실험)

  • Park, K.;Shin, M.C.;Yang, D.Y.;Cho, J.R.;Kim, J.S.
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.335-344
    • /
    • 1995
  • In this paper, an experimental study of a hot forging process is carried out using plasticine and the die set manufactured with the aid of rapid prototyping. In order to manufacture the die set, Stereolithography Apparatus(SLA) which is most widely used rapid prototyping system is introduced. Turbine blade forging is performed using palsticine and the SLA prototype die set. Through the experiment, it has been shown that SLA prototype is suitable to the die set for the plasticine workpiece, and the formability and the forming load of turbine blade forging are predicted.

  • PDF

Accuracy of dies fabricated by various three dimensional printing systems: a comparative study (다양한 삼차원 프린팅 시스템으로 제작된 다이의 정확도 비교)

  • Baek, Ju Won;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.242-253
    • /
    • 2020
  • Purpose: The aim of this study was to compare the accuracy of dies fabricated using 3D printing system to conventional method and to evaluate overall volumetric changes by arranging the superimposed surfaces. Materials and Methods: A mandibular right first molar from a dental model was prepared, scanned and fabricated with composites of polyetherketoneketone (PEKK). Master dies were classified into 4 groups. For the conventional method, the impression was taken with polyvinylsiloxane and the impression was poured with Type IV dental stone. For the 3D printing, the standard die was scanned and converted into models using three different 3D printers. Each of four methods was used to make 10 specimens. Scanned files were superimposed with the standard die by using 3D surface matching software. For statistical analysis, Kruskal-Wallis test and Mann-Whitney U test were done (P < 0.05). Results: Compared to the standard model, the volumetric changes of dies fabricated by each method were significantly different except the models fabricated by conventional method and 3D printer of Stereolithography (P < 0.05). The conventional dies showed the lowest volumetric change than 3D printed dies (P < 0.05). 3D printed dies fabricated by Stereolithography showed the lowest volumetric change among the different 3D printers (P < 0.05). Conclusion: The conventional dies were more accurate than 3D printed dies, though 3D printed dies were within clinically acceptable range. Thus, 3D printed dies can be used for fabricating restorations.