DOI QR코드

DOI QR Code

Accuracy of dies fabricated by various three dimensional printing systems: a comparative study

다양한 삼차원 프린팅 시스템으로 제작된 다이의 정확도 비교

  • Baek, Ju Won (Dental Clinic Center, ChungBuk National University Hospital) ;
  • Shin, Soo-Yeon (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 백주원 (충북대학교병원 치과) ;
  • 신수연 (단국대학교 치과대학 치과보철학교실)
  • Received : 2020.10.12
  • Accepted : 2020.11.02
  • Published : 2020.12.31

Abstract

Purpose: The aim of this study was to compare the accuracy of dies fabricated using 3D printing system to conventional method and to evaluate overall volumetric changes by arranging the superimposed surfaces. Materials and Methods: A mandibular right first molar from a dental model was prepared, scanned and fabricated with composites of polyetherketoneketone (PEKK). Master dies were classified into 4 groups. For the conventional method, the impression was taken with polyvinylsiloxane and the impression was poured with Type IV dental stone. For the 3D printing, the standard die was scanned and converted into models using three different 3D printers. Each of four methods was used to make 10 specimens. Scanned files were superimposed with the standard die by using 3D surface matching software. For statistical analysis, Kruskal-Wallis test and Mann-Whitney U test were done (P < 0.05). Results: Compared to the standard model, the volumetric changes of dies fabricated by each method were significantly different except the models fabricated by conventional method and 3D printer of Stereolithography (P < 0.05). The conventional dies showed the lowest volumetric change than 3D printed dies (P < 0.05). 3D printed dies fabricated by Stereolithography showed the lowest volumetric change among the different 3D printers (P < 0.05). Conclusion: The conventional dies were more accurate than 3D printed dies, though 3D printed dies were within clinically acceptable range. Thus, 3D printed dies can be used for fabricating restorations.

목적: 이 연구의 목적은 3D 프린팅으로 제작된 다이의 정확도를 인상재와 치과용 석고를 이용하여 제작한 기존 방식 다이와 비교하고 체적 변화를 평가하여 정확도를 비교하는 것이다. 연구 재료 및 방법: 치과용 모델 하악 우측 제1대구치를 준비하여 스캔한 뒤 polyetherketoneketone (PEKK)으로 기준 다이를 제작한다. 기존 방식 다이는 기준 다이를 polyvinylsiloxane로 인상채득한 뒤 Type IV 치과용 석고를 부었다. 3D 프린팅 시스템의 경우 기준 다이를 스캔하고 3개의 서로 다른 3D 프린터를 이용하여 모델로 변환하였다. 4가지 방법으로 각각 10개의 표본을 만들었다. 3D 표면매칭 소프트웨어를 사용하여 기준 다이와 중첩하였다. 통계 분석을 위해 Kruskal-Wallis test, Mann-Whitney U test를 수행하였다(P < 0.05). 결과: 기준 다이와 비교하여 기존 방식, Stereolithography로 제작된 다이를 제외하고는 각 방식으로 제작된 다이의 체적 변화가 상당히 있었다(P < 0.05). 기존 방식으로 제작된 다이는 3D 프린팅된 다이보다 체적 변화가 가장 적었다(P < 0.05). Stereolithography로 제작된 3D 프린팅 다이는 다른 3D 프린터 중에서 체적 변화가 가장 적었다(P < 0.05). 결론: 기존 방식의 다이는 3D 프린팅 다이보다 더 정확했지만 3D 프린팅 다이는 임상적으로 허용되는 범위 내에 있었다. 따라서 3D 프린팅 다이는 수복물 제작에 사용할 수 있다.

Keywords

References

  1. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016;32:54-64. https://doi.org/10.1016/j.dental.2015.09.018
  2. Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont 2012;21:641-4. https://doi.org/10.1111/j.1532-849X.2012.00888.x
  3. van Noort R. The future of dental devices is digital. Dent Mater 2012;28:3-12. https://doi.org/10.1016/j.dental.2011.10.014
  4. Ian G, David R, Brent S. Additive manufacturing technologies: 3d printing, rapid prototyping, and direct digital manufacturing. 2nd ed. New York; Springer; 2015.
  5. Faber J, Berto PM, Quaresma M. Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. Am J Orthod Dentofacial Orthop 2006;129:583-9. https://doi.org/10.1016/j.ajodo.2005.12.015
  6. Marshall B. Automated fabrication: improving productivity in manufacturing. 1st ed. Englewood Cliffs; Prentice Hall; 1993.
  7. Kruth JP, Leu MC, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals 1998;47:525-40. https://doi.org/10.1016/S0007-8506(07)63240-5
  8. Chua CK, Leong KF. Rapid prototyping: principles and applications in manufacturing. 1st ed. New York; Wiley; 1998.
  9. Pham DT, Gault RS. A comparison of rapid prototyping technologies. Int J Mach Tools Manufac 1998;38:1257-87. https://doi.org/10.1016/S0890-6955(97)00137-5
  10. Kwak KH, Park SH. Trend of the global 3D printing industry technology. JKSME 2013;53:58-60.
  11. Hull CW. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4575330. 1986.
  12. Chang PS, Parker TH, Patrick CW Jr., Miller MJ. The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg 2003;14:164-70. https://doi.org/10.1097/00001665-200303000-00006
  13. Wu GH, Hsu SH. Review: Polymeric-Based 3D Printing for Tissue Engineering. J Med Biol Eng 2015;35:285-92. https://doi.org/10.1007/s40846-015-0038-3
  14. Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofacial Orthop 2014;145:108-15. https://doi.org/10.1016/j.ajodo.2013.05.011
  15. Chua CK, Leong KF. 3D printing and additive manufacturing: principles and applications. 4th ed. Singapre; World Scientific; 2014.
  16. Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SM, Dos Santos Filho JH, Silva DN. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg 2009;37:167-73. https://doi.org/10.1016/j.jcms.2008.10.008
  17. Nandini Y, Vinitha KB, Manvi S, Smitha M. Comparison of dimensional accuracy of four different die materials before and after disinfection of the impression: an in vitro study. J Contemp Dent Pract 2013;14:668-74. https://doi.org/10.5005/jp-journals-10024-1383
  18. Bailey JH, Donovan TE, Preston JD. The dimensional accuracy of improved dental stone, silverplated, and epoxy resin die materials. J Prosthet Dent 1988;59:307-10. https://doi.org/10.1016/0022-3913(88)90178-3
  19. Salmi M, Paloheimo KS, Tuomi J, Wolff J, Makitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg 2013;41:603-9. https://doi.org/10.1016/j.jcms.2012.11.041
  20. Valderhaug J, Floystrand F. Dimensional stability of elastomeric impression materials in custom-made and stock trays. J Prosthet Dent 1984;52:514-7. https://doi.org/10.1016/0022-3913(84)90336-6
  21. Artopoulos A, Juszczyk AS, Rodriguez JM, Clark RK, Radford DR. Three-dimensional processing deformation of three denture base materials. J Prosthet Dent 2013;110:481-7. https://doi.org/10.1016/j.prosdent.2013.07.005
  22. Murugesan K, Anandapandian PA, Sharma SK, Vasantha Kumar M. Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques. J Indian Prosthodont Soc 2012;12:16-20. https://doi.org/10.1007/s13191-011-0103-8
  23. Bloem TJ, Czerniawski B, Luke J, Lang BR. Determination of the accuracy of three die systems. J Prosthet Dent 1991;65:758-62. https://doi.org/10.1016/S0022-3913(05)80007-1
  24. Derrien G, Sturtz G. Comparison of transverse strength and dimensional variations between die stone, die epoxy resin, and die polyurethane resin. J Prosthet Dent 1995;74:569-74. https://doi.org/10.1016/S0022-3913(05)80307-5
  25. Newman A, Williams JD. Die materials for inlay, crown and bridge work. Br Dent J 1969;127:415-20.
  26. Kenyon BJ, Hagge MS, Leknius C, Daniels WC, Weed ST. Dimensional accuracy of 7 die materials. J Prosthodont 2005;14:25-31. https://doi.org/10.1111/j.1532-849x.2005.00007.x
  27. Millstein PL. Determining the accuracy of gypsum casts made from type IV dental stone. J Oral Rehabil 1992;19:239-43. https://doi.org/10.1111/j.1365-2842.1992.tb01098.x
  28. Minneci C, Mello AM, Mossello E, Baldasseroni S, Macchi L, Cipolletti S, Marchionni N, Di Bari M. Comparative study of four physical performance measures as predictors of death, incident disability, and falls in unselected older persons: the insufficienza Cardiaca negli Anziani Residenti a Dicomano Study. J Am Geriatr Soc 2015;63:136-41. https://doi.org/10.1111/jgs.13195
  29. Lee H. Use of the personal computer to design processing conditions for improving dental die accuracy. J Prosthet Dent 1986;55:141-5. https://doi.org/10.1016/0022-3913(86)90095-8
  30. Brukl CE, McConnell RM, Norling BK, Collard SM. Influence of gauging water composition on dental stone expansion and setting time. J Prosthet Dent 1984;51:218-23. https://doi.org/10.1016/0022-3913(84)90265-8
  31. Duke P, Moore BK, Haug SP, Andres CJ. Study of the physical properties of type IV gypsum, resincontaining, and epoxy die materials. J Prosthet Dent 2000;83:466-73. https://doi.org/10.1016/S0022-3913(00)70043-6
  32. Derrien G, Le Menn G. Evaluation of detail reproduction for three die materials by using scanning electron microscopy and two-dimensional profilometry. J Prosthet Dent 1995;74:1-7. https://doi.org/10.1016/S0022-3913(05)80221-5
  33. Nomura GT, Reisbick MH, Preston JD. An investigation of epoxy resin dies. J Prosthet Dent 1980;44:45-50. https://doi.org/10.1016/0022-3913(80)90045-1
  34. Ender A, Mehl A. Full arch scans: conventional versus digital impressions - an in-vitro study. Int J Comput Dent 2011;14:11-21.
  35. Caputi S, Varvara G. Dimensional accuracy of resultant casts made by a monophase, one-step and two-step, and a novel two-step putty/light-body impression technique: an in vitro study. J Prosthet Dent 2008;99:274-81. https://doi.org/10.1016/S0022-3913(08)60061-X
  36. Walker MP, Ries D, Borello B. Implant cast accuracy as a function of impression techniques and impression material viscosity. Int J Oral Maxillofac Implants 2008;23:669-74.
  37. Wostmann B, Rehmann P, Balkenhol M. Accuracy of impressions obtained with dual-arch trays. Int J Prosthodont 2009;22:158-60.
  38. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008;204:505-11. https://doi.org/10.1038/sj.bdj.2008.350
  39. Birnbaum NS, Aaronson HB. Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent 2008;29:494, 496, 498-505.
  40. Christensen GJ. Impressions are changing: deciding on conventional, digital or digital plus in-office milling. J Am Dent Assoc 2009;140:1301-4. https://doi.org/10.14219/jada.archive.2009.0054
  41. Gordon GE, Johnson GH, Drennon DG. The effect of tray selection on the accuracy of elastomeric impression materials. J Prosthet Dent 1990;63:12-5. https://doi.org/10.1016/0022-3913(90)90257-D
  42. Rudolph H, Luthardt RG, Walter MH. Computeraided analysis of the influence of digitizing and surfacing on the accuracy in dental CAD/CAM technology. Comput Biol Med 2007;37:579-87. https://doi.org/10.1016/j.compbiomed.2006.05.006
  43. Ziegler M. Digital impression taking with reproducibly high precision. Int J Comput Dent 2009;12:159-63.
  44. Keating AP, Knox J, Bibb R, Zhurov AI. A comparison of plaster, digital and reconstructed study model accuracy. J Orthod 2008;35:191-201; discussion 175. https://doi.org/10.1179/146531207225022626
  45. International Organization for Standardization (1998). Dental gypsum products (ISO Standard No. 6873).
  46. Lee KY, Cho JW, Chang NY, Chae JM, Kang KH, Kim SC, Cho JH. Accuracy of three-dimensional printing for manufacturing replica teeth. Korean J Orthod 2015;45:217-25. https://doi.org/10.4041/kjod.2015.45.5.217
  47. Kasparova M, Grafova L, Dvorak P, Dostalova T, Prochazka A, Eliasova H, Prusa J, Kakawand S. Possibility of reconstruction of dental plaster casts from 3D digital study models. Biomed Eng Online 2013;12:49. https://doi.org/10.1186/1475-925X-12-49

Cited by

  1. Effect of Washing Condition on the Fracture Strength, and the Degree of Conversion of 3D Printing Resin vol.11, pp.24, 2021, https://doi.org/10.3390/app112411676