• Title/Summary/Keyword: Stereo Image Sequences

Search Result 24, Processing Time 0.026 seconds

Clausius Normalized Field-Based Stereo Matching for Uncalibrated Image Sequences

  • Koh, Eun-Jin;Lee, Jae-Yeon;Park, Jun-Seok
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.750-760
    • /
    • 2010
  • We propose a homology between thermodynamic systems and images for the treatment of time-varying imagery. A physical system colder than its surroundings absorbs heat from the surroundings. Furthermore, the absorbed heat increases the entropy of the system, which is closely related to its disorder as given by the definition of Clausius and Boltzmann. Because pixels of an image are viewed as a state of lattice-like molecules in a thermodynamic system, the task of reckoning the entropy variations of pixels is similar to estimating their degrees of disorder. We apply this homology to the uncalibrated stereo matching problem. The absence of calibrations alleviates user efforts to install stereo cameras and enables users to freely modify the composition of the cameras. The proposed method is also robust to differences in brightness, white balancing, and even focusing between stereo image pairs. These peculiarities enable users to estimate the depths of interesting objects in practical applications without much effort in order to set and maintain a stereo vision setup. Users can consequently utilize two webcams as a stereo camera.

Affine Model for Generating Stereo Mosaic Image from Video Frames (비디오 프레임 영상의 자유 입체 모자이크 영상 제작을 위한 부등각 모델 연구)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Park, Jun-Ku;Koh, Jin-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.49-56
    • /
    • 2009
  • Recently, a generation of high quality mosaic images from video sequences has been attempted by a variety of investigations. Among the matter of investigation, in this paper, generation on stereo mosaic utilizing airborne-video sequence images is focused upon. The stereo mosaic is made by creating left and right mosaic which are fabricated by front and rear slices having different viewing angle in consecutive video frames. For making the stereo mosaic, motion parameters which are able to define geometric relationship between consecutive video frames are determined. For determining motion parameters, affine model which is able to explain relative motion parameters is applied by this paper. The mosaicing method using relative motion parameters is called by free mosaic. The free mosaic proposed in this paper consists of 4 step processes: image registration with reference to first frame using affine model, front and rear slicing, stitching line definition and image mosaicing. As the result of experiment, the left and right mosaic image, anaglyphic image for stereo mosaic images are showed and analyzed y-parallax for checking accuracy.

  • PDF

Realistic Building Modeling from Sequences of Digital Images

  • Song, Jeong-Heon;Kim, Min-Suk;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.516-516
    • /
    • 2002
  • With the wide usage of LiDAR data and high-resolution satellite image, 3D modeling of buildings in urban areas has become an important research topic in the photogrammetry and computer vision field for many years. However the previous modeling has its limitations of merely texturing the image to the DSM surface of the study area and does not represent the relief of building surfaces. This study is focused on presenting a system of realistic 3D building modeling from consecutive stereo image sequences using digital camera. Generally when acquiring images through camera, various parameters such as zooming, focus, and attitude are necessary to extract accurate results, which in certain cases, some parameters have to be rectified. It is, however, not always possible or practical to precisely estimate or rectify the information of camera positions or attitudes. In this research, we constructed the collinearity condition of stereo images through extracting the distinctive points from stereo image sequence. In addition, we executed image matching with Graph Cut method, which has a very high accuracy. This system successfully performed the realistic modeling of building with a good visual quality. From the study, we concluded that 3D building modeling of city area could be acquired more realistically.

  • PDF

A New Refinement Method for Structure from Stereo Motion (스테레오 연속 영상을 이용한 구조 복원의 정제)

  • 박성기;권인소
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.935-940
    • /
    • 2002
  • For robot navigation and visual reconstruction, structure from motion (SFM) is an active issue in computer vision community and its properties arc also becoming well understood. In this paper, when using stereo image sequence and direct method as a tool for SFM, we present a new method for overcoming bas-relief ambiguity. We first show that the direct methods, based on optical flow constraint equation, are also intrinsically exposed to such ambiguity although they introduce robust methods. Therefore, regarding the motion and depth estimation by the robust and direct method as approximated ones. we suggest a method that refines both stereo displacement and motion displacement with sub-pixel accuracy, which is the central process f3r improving its ambiguity. Experiments with real image sequences have been executed and we show that the proposed algorithm has improved the estimation accuracy.

Robust Human Silhouette Extraction Using Graph Cuts (그래프 컷을 이용한 강인한 인체 실루엣 추출)

  • Ahn, Jung-Ho;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • In this paper we propose a new robust method to extract accurate human silhouettes indoors with active stereo camera. A prime application is for gesture recognition of mobile robots. The segmentation of distant moving objects includes many problems such as low resolution, shadows, poor stereo matching information and instabilities of the object and background color distributions. There are many object segmentation methods based on color or stereo information but they alone are prone to failure. Here efficient color, stereo and image segmentation methods are fused to infer object and background areas of high confidence. Then the inferred areas are incorporated in graph cut to make human silhouette extraction robust and accurate. Some experimental results are presented with image sequences taken using pan-tilt stereo camera. Our proposed algorithms are evaluated with respect to ground truth data and proved to outperform some methods based on either color/stereo or color/contrast alone.

A Vehicle Tracking Algorithm Focused on the Initialization of Vehicle Detection-and Distance Estimation (초기 차량 검출 및 거리 추정을 중심으로 한 차량 추적 알고리즘)

  • 이철헌;설성욱;김효성;남기곤;주재흠
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1496-1504
    • /
    • 2004
  • In this paper, we propose an algorithm for initializing a target vehicle detection, tracking the vehicle and estimating the distance from it on the stereo images acquired from a forward-looking stereo camera mounted on a road driving vehicle. The process of vehicle detection extracts road region using lane recognition and searches vehicle feature from road region. The distance of tracking vehicle is estimated by TSS correlogram matching from stereo Images. Through the simulation, this paper shows that the proposed method segments, matches and tracks vehicles robustly from image sequences obtained by moving stereo camera.

Intermediate Depth Image Generation using Disparity Increment of Stereo Depth Images (스테레오 깊이영상의 변위증분을 이용한 중간시점 깊이영상 생성)

  • Koo, Ja-Myung;Seo, Young-Ho;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.363-373
    • /
    • 2012
  • This paper proposes a method to generate a depth image at an arbitrary intermediate view-point, which is targeting a video service for free-view, auto-stereoscopy, holography, etc. It assumes that the leftmost and the rightmost depth images are given and they both have been camera-calibrated and image-rectified. This method calculates and uses a disparity increment per depth value. In this paper, it is obtained by stereo matching for the given two depth image by considering more general cases. The disparity increment is used to find the location in the intermediate view-point depth image (IVPD) for each depth in the given images. Thus, this paper finds two IVPDs, from left image and from right image. Noises are removed and holes are filled in each IVPDs and the two results are combined to get the final IVPD. The proposed method was implemented and applied to several test sequences. The results revealed that the quality of the generated IVPD corresponds to 33.84dB of PSNR in average and it takes about 1 second to generate a HD IVPD. We evaluate that this image quality is quite good by considering the low correspondency among the left images, intermediate images, and the right images in the test sequences. If the execution speed is improved, the proposed method can be a very useful method to generate an IVPD at an arbitrary view-point, we believe.

Fast Disparity Vector Estimation using Motion vector in Stereo Image Coding (스테레오 영상에서 움직임 벡터를 이용한 고속 변이 벡터 추정)

  • Doh, Nam-Keum;Kim, Tae-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.56-65
    • /
    • 2009
  • Stereoscopic images consist of the left image and the right image. Thus, stereoscopic images have much amounts of data than single image. Then an efficient image compression technique is needed, the DPCM-based predicted coding compression technique is used in most video coding standards. Motion and disparity estimation are needed to realize the predicted coding compression technique. Their performing algorithm is block matching algorithm used in most video coding standards. Full search algorithm is a base algorithm of block matching algorithm which finds an optimal block to compare the base block with every other block in the search area. This algorithm presents the best efficiency for finding optimal blocks, but it has very large computational loads. In this paper, we have proposed fast disparity estimation algorithm using motion and disparity vector information of the prior frame in stereo image coding. We can realize fast disparity vector estimation in order to reduce search area by taking advantage of global disparity vector and to decrease computational loads by limiting search points using motion vectors and disparity vectors of prior frame. Experimental results show that the proposed algorithm has better performance in the simple image sequence than complex image sequence. We conclude that the fast disparity vector estimation is possible in simple image sequences by reducing computational complexities.

Object-based Stereo Sequence Coding using Disparity and Motion Vector Relationship (변이-움직임 벡터의 상관관계를 이용한 객체기반 스테레오 동영상 부호화)

  • 박찬희;손광훈
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.238-247
    • /
    • 2002
  • In this paper, we propose an object-based stereo sequence compression technique using disparity-motion vector relationship. The proposed method uses the coherence of motion vectors and disparity vectors in the left and right Image sequences. After two motion vectors and one disparity vector ate computed using FBMA(Fixed Block Matching Algorithm), the disparity vector of the current stereoscopic pall is computed by disparity-motion vector relationship with vectors which are previously estimated. Moreover, a vector regularization technique is applied in order to obtain reliable vectors. For an object-based coding. the object is defined and coded in terms of layers of VOP such as in MPEG-4. we present a method using disparity and motion vector relationship for extending two-frame compensation into three-frame compensation method for prediction coding of B-VOP. The proposed algorithm shows a high performance when comparing with a conventional method.

Hand Gesture Recognition for Understanding Conducting Action (지휘행동 이해를 위한 손동작 인식)

  • Je, Hong-Mo;Kim, Ji-Man;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.263-266
    • /
    • 2007
  • We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.

  • PDF