Realistic Building Modeling from Sequences of Digital Images

Jeong-Heon Song, Min-Suk Kim, Dong-Yeob Han, and Yong-Il Kim

Spatial Informatics and System Lab., School of Civil, Urban and Geo System Engineering, Seoul

National University, Shillim Dong, Kwanak Gu, South Korea, 151-744

Tel.: 02-880-7371, Fax.: 02-889-0032

E-mail: newssong@hotmail.com

Abstract

With the wide usage of LiDAR data and high-resolution satellite image, 3D modeling of

buildings in urban areas has become an important research topic in the photogrammetry

and computer vision field for many years. However the previous modeling has its

limitations of merely texturing the image to the DSM surface of the study area and does

not represent the relief of building surfaces.

This study is focused on presenting a system of realistic 3D building modeling from

consecutive stereo image sequences using digital camera. Generally when acquiring

images through camera, various parameters such as zooming, focus, and attitude are

necessary to extract accurate results, which in certain cases, some parameters have to be

rectified. It is, however, not always possible or practical to precisely estimate or rectify

the information of camera positions or attitudes.

In this research, we constructed the collinearity condition of stereo images through

extracting the distinctive points from stereo image sequence. In addition, we executed

image matching with Graph Cut method, which has a very high accuracy. This system

successfully performed the realistic modeling of building with a good visual quality.

From the study, we concluded that 3D building modeling of city area could be acquired

more realistically.

Keyword: Image Matching, 3D Building Modeling, Texturing

-516 -