• Title/Summary/Keyword: Step-down voltage

Search Result 155, Processing Time 0.022 seconds

A Study on Novel Step Up-Down Converter using Loss-Less Snubber Capacitor (로스레스 스너버 커패시터를 이용한 새로운 스텝 업-다운 컨버터에 관한 연구)

  • Kwak, D.K.;Lee, B.S.;Kim, C.S.;Shim, J.S.;Jung, W.S.;Son, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.15-16
    • /
    • 2012
  • This paper is study on a novel high efficiency step up-down converter using loss-less snubber capacitor. The proposed converter is accomplished that the turn-on operation of switches is on zero current switching (ZCS) by DCM. The converter is also applicable to a new quasi-resonant circuit to achieve high efficiency converter. The control switches using in the converter are operated with soft switching, that is, ZVS and ZCS by quasi-resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the converter is high.

  • PDF

Trend of low voltage and high current Technology for DC-DC Converters (저전압대전류(低電壓大電流) DC-DC 컨버터 기술동향(技術動向))

  • Suzuki, Shotaro
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.3-11
    • /
    • 2002
  • This paper presents the trend of low voltage and high current technology for DC-DC converters. It can be said that the output voltage of the on-board power supply has been rapidly moving forward a low voltage in proportion to the minuteness of the semiconductors. As for as its speed is concerned, the change of the market situation seems to be faster than that of R&D for the low voltage and high current products put out by power supply manufacturers. Here, the present situation and the trend of non-isolated type step-down DC-DC converter and isolated type DC-DC converter called "Brick" will be taken up mainly from the fellowing point of view. -low voltage and high current keeping up with the current demand for the latest telecommunication networks and broadband. -build-up of the total solution for dispersion system power supply. In this paper, an explanation is given to mainly concerning to the newest products in the supplier's position.

  • PDF

Load and Capacitor Stacking Topologies for DC-DC Step Down Conversion

  • Mace, Jules;Noh, Gwangyol;Jeon, Yongjin;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1449-1457
    • /
    • 2019
  • This paper presents two voltage domain stacking topologies for powering integrated digital loads such as multiprocessors or 3D integrated circuits. Pairs of loads and capacitors are connected in series to form a stack of voltage domains. The voltage is balanced by switching the position of the capacitors in one case and the position of the loads in the other case. This method makes the voltage regulation robust to large differential load power consumption. The first configuration can be named the load stacking topology. The second configuration can be named the capacitor stacking topology. This paper aims at proposing and comparing these two topologies. Models of both topologies and a switching scheme are presented. The behavior, control scheme, losses and overall performance are analyzed and compared theoretically in simulation and experiments. Experimental results show that the capacitor stacking topology has better performance with a 30% voltage ripple reduction.

A New High Efficient Bi-directional DC/DC Converter in the Dual Voltage System

  • Lee Su-Won;Lee Seong-Ryong;Jeon Chil-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.343-350
    • /
    • 2006
  • This paper introduces a new high efficient bi-directional, non-isolated DC/DC converter. Through variations of the topology of the conventional Cuk converter, an optimum bi-directional DC/DC converter is proposed. Voltage and current in the proposed DC/DC converter are continuous. Furthermore, the efficiency in both step-up and step-down mode is improved over that of the conventional bi-directional converter. To prove the validation for the proposed converter, simulations and experiments are executed with a 300W bi-directional converter.

Modified Digital Pulse Width Modulator for Power Converters with a Reduced Modulation Delay

  • Qahouq, Jaber Abu;Arikatla, Varaprasad;Arunachalam, Thanukamalam
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.98-103
    • /
    • 2012
  • This paper presents a digital pulse width modulator (DPWM) with a reduced digital modulation delay (a transport delay of the modulator) during the transient response of power converters. During the transient response operation of a power converter, as a result of dynamic variations such as load step-up or step-down, the closed loop controller will continuously adjust the duty cycle in order to regulate the output voltage. The larger the modulation delays, the larger the undesired output voltage deviation from the reference point. The three conventional DPWM techniques exhibit significant leading-edge and/or trailing-edge modulation delays. The DPWM technique proposed in this paper, which results in modulation delay reductions, is discussed, experimentally tested and compared with conventional modulation techniques.

A Study on Residential Hybrid Distribution System for Reducing Power Conversion Loss (전력 변환 손실 저감을 위한 하이브리드 주거배전시스템)

  • Byen, Byeng-Joo;Seo, Hyun-Uk;Choi, Jung-Muk;Lee, Young-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.413-421
    • /
    • 2013
  • This paper proposes residential hybrid distribution system that can supply AC power and DC power to AC load and DC load at the same time. This hybrid distribution system consists of three parts: bidirectional inverter, step-up converter and step-down converter. Also that is used to supply voltage to home application is classified of AC load and DC load as load characteristics. The performance of proposed hybrid distribution system is validated through the hardware implementation and the experimental results.

Soft-Switching Auxiliary Current Control for Improving Load Transient Response of Buck Converter

  • Kim, Doogwook;Shin, Joonho;Shin, Jong-Won
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.160-162
    • /
    • 2020
  • A control technique for the auxiliary buck/boost converter is proposed herein to improve the load transient response of the buck converter. The proposed technique improves the system efficiency by enabling the soft switching operation of the auxiliary converter. The design guidelines for achieving capacitor charge balance for the output capacitor during the transient are also presented herein. The experimental results revealed that the output voltage undershoot and settling time during the load step-up transient were 40 mV and 14 ㎲, respectively, and the output voltage overshoot and settling time during the load step-down transient were 35 mV and 21 ㎲, respectively. The performance and effectiveness of the proposed technique were experimentally verified using a prototype buck converter with a 15-V input, 3.3-V output, and 200-kHz switching frequency.

  • PDF

Three-phase Low Voltage Diode Rectifier Circuit not using a Step-Down Transformer (강압 트랜스를 이용하지 않은 3상 저전압 다이오드 정류회로)

  • Mun, S.P.;Suh, K.Y.;Lee, H.W.;Kim, Y.M.;Kang, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.215-218
    • /
    • 2001
  • In conventional three-phase rectifiers, it was necessary to use a transformer to obtain low output voltage. In this paper, we propose a new three-phase rectifiers circuit that achieves low voltage by using a very simple circuit configuration that does not have a transformer and does not need any complex control. We also describe the operation principle of the proposed circuit, and derive a theoretical formula for its current waveform. On the basis of this formula it also explores the theoretical input/output current characteristics, theoretical current amplification factor, and theoretical output voltage characteristics of these theoretical values with experimentally obtained input/output current characteristics, current amplification factor, and output voltage characteristics, allowed us to confirm the soundness of our theoretical analyses.

  • PDF

Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors

  • Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1629-1638
    • /
    • 2016
  • Differential power processing (DPP) systems are among the most effective architectures for photovoltaic (PV) power systems because they are highly efficient as a result of their distributed local maximum power point tracking ability, which allows the fractional processing of the total generated power. However, DPP systems require a high-efficiency, high step-up/down bidirectional converter with broad operating ranges and galvanic isolation. This study proposes a single, magnetic, high-efficiency, high step-up/down bidirectional DC-DC converter. The proposed converter is composed of a bidirectional flyback and a bidirectional isolated switched-capacitor cell, which are competitively cheap. The output terminals of the flyback converter and switched-capacitor cell are connected in series to obtain the voltage step-up. In the reverse power flow, the converter reciprocally operates with high efficiency across a broad operating range because it uses hard switching instead of soft switching. The proposed topology achieves a genuine on-off interleaved energy transfer at the transformer core and windings, thus providing an excellent utilization ratio. The dynamic characteristics of the converter are analyzed for the controller design. Finally, a 240 W hardware prototype is constructed to demonstrate the operation of the bidirectional converter under a current feedback control loop. To improve the efficiency of a PV system, the maximum power point tracking method is applied to the proposed converter.

Novel Two Stage AC-to-DC Converter with Single Switched Zero Voltage Transition Boost Pre-Regulator using DC-Linked Energy Feedback (새로운 영전압 스위칭 이단방식의 고역률 컨버터)

  • Roh, Chung-Wook;Moon, Gun-Woo;Jung, Young-Seok;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.385-387
    • /
    • 1996
  • A novel two stage soft-switching ac-to-dc convener with power factor correction is proposed. The proposed convener provides zero-voltage-switching (ZVS) condition to main switch of boost pre-regulator without auxiliary switch. Comparing to the conventional two stage approach(ZVS-PWM boost rectifier followed by off-line ZVS dc-dc step down converter), the proposed approach is simple and reducing EMI noise problem. A new simple DC-linked energy feedback circuit provides zero-voltage-switching condition to boost pre-regulator without imposing additional voltage and current stresses and loss of PWM capability. Operational principle, analysis, control of the proposed converter together with the simulation results of 1KW prototype are presented.

  • PDF