• 제목/요약/키워드: Step motor

검색결과 660건 처리시간 0.027초

유도전동기의 디지탈 속도 제어 (Speed control of a induction motor system using digital control method)

  • 이충환;김상봉;하주식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.987-992
    • /
    • 1992
  • In recent years, induction motor is applied for several industrial actuatung parts instead of direct current motor because of the robust construction, nonexpensive and maintenance-free actuator etc. and having capability of speed control according to development of power electrounics and microprocessor techniques. In the paper, a microprocessor-based digital control approach for spped control of induction motor system is presented by considering a simple modelling equation as the system expression equation of induction motor and using the self tuning control and torque effdforward control method. As the model equation of the induction motor system, we use a second order differential equation which is well known in the modeling equation is induced form the control theory stand point such tath we can describe usually the motor system connected by inverter, generator and load etc. The effectiveness of the control system composed by the above mentioned design concept is illustrated by the expermental result in the presence of step reference change and generator load variation.

  • PDF

선형 유도기 구동 방식 공기 베어링 스테이지에 관한 연구 (Study on the Air-bearing Stage Driven by Linear Induction Motors)

  • 정광석;심기본
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.39-46
    • /
    • 2010
  • Linear induction motor is adopted as an actuator of the planar stage. An inherently poor characteristic at zero or ultra-low speed zone of the induction motor is remarkably improved due to a recent development of power electronic semiconductor technology and a spatial vector control theory. At present, a servo response speed of the induction motor reaches 90 percent of one of PM synchronous or BLDC motor. Specially, as a secondary of the induction motor can be constructed using uniform conducting sheets, there is no periodic force ripple as in PM motors. So, the induction motor can be superior to another driving means under a certain condition. This paper discusses the overall development procedure of non-contact planar stage with a big workspace using linear induction motors.

스텝모터 역기전력을 이용한 폐루프 시스템 구현에 관한 연구 (A study on the implementation of closed-loop system using the stepper motor back-EMF)

  • 임성빈;정상화
    • 대한안전경영과학회지
    • /
    • 제17권3호
    • /
    • pp.363-370
    • /
    • 2015
  • In this paper, the control technique of the stepping motor using back electromotive force(B-EMF) without encoder is investigated. The stepping motor generally uses the rotary encoder to detect the rotor position. Since this method increases the cost and the motor configuration size, the new closed-loop control method applied for the B-EMF was implemented by using current detect circuit, AD-converter, and micro controller unit(MCU). The control loop of stepping motor became very simplified. The current change of stepping motor measured by the amplifier was measured and analyzed, when the missing step is occurred. Based on the data from current feedback, position errors were compensated and confirmed by using AD-converter.

Predictive Control for Linear Motor Conveyance Positioning System using DR-FNN

  • Lee, Jin-Woo;Sohn, Dong-Seop;Min, Jeong-Tak;Lee, Young-Jin;Lee, Kwon-Soon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.307-310
    • /
    • 2003
  • In the maritime container terminal, LMTT(Linear Motor-based Transfer Technology) is horizontal transfer system for the yard automation, which has been proposed to take the place of AGV(Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc., LMCPS (Linear Motor Conveyance Positioning System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCPS using DR-FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

유도형 탄약의 4축 조종날개 제어용 Sensorless BLDC 전동기 구동시스템 개발 및 HILS에 의한 검증 (A Verification of a Sensorless BLDC Motor Drive System to Control 4-axis Fins for a Guided Artillery Munition by HILS)

  • 이태형;김상훈;조창연;박장호;김재호
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.580-586
    • /
    • 2015
  • A brushless DC (BLDC) motor control system for four-axis driving fins to control the flight attitude of a guided artillery munition is developed in this study. This system adopts a simple sensorless control scheme without a Hall sensor. A 12-step driving sensorless BLDC motor scheme is used to improve the output torque. This system has many restrictive problems that hinder the verification of a real system. For example, this has cost and environmental limitations. Therefore, this study develops HILS to verify a four-axis driving fin control system and verifies the position control system hardware by HILS operation.

Claw Pole 영구자석형 스테핑 모터의 정특성 향상에 관한 연구 (A study on the improvement of static characteristic In claw poled permanent magnet stepping motor)

  • 정대성;임승빈;김태형;이주;권호;손영규;최승길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1288-1290
    • /
    • 2005
  • This paper analyzed the characteristics of the claw pole PM step motor by using 3D FEM. As the magnetization occurs along the z-axis of the motor, it is necessary to apply 3D FEM for analysis of the claw pole PM step motor. Considering the computation time, however, the number of the analysis model is minimized by using the "Design of Experiments(DOE)". By using the "DOE", efficient analysis was able to be done. To see the effects of the design factors, the 3D FEM is applied only to the selected models. As the design factors, the teeth shape, the number of turns and the permanent magnet overhang was selected.

  • PDF

배터리로 구동되는 이동 로봇의 에너지 소모 최소화를 위한 3-구간 속도 제어 (A 3-Step Speed Control for Minimizing Energy Consumption for Battery-Powered Wheeled Mobile Robots)

  • 김병국;김종희
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.208-220
    • /
    • 2006
  • Energy of wheeled mobile robot is usually supplied by batteries. In order to extend operation time of mobile robots, it is necessary to minimize the energy consumption. The energy is dissipated mostly in the motors, which strongly depends on the velocity profile. This paper investigates various 3-step (acceleration - cruise - deceleration) speed control methods to minimize a new energy object function which considers the practical energy consumption dissipated in motors related to motor control input, velocity profile, and motor dynamics. We performed an analysis on the energy consumption various velocity profile patterns generated by standard control input such as step input, ramp input, parabolic input, and exponential input. Based on these standard control inputs, we analyzed the six 3-step velocity profile patterns: E-C-E, P-C-P, R-C-R, S-C-S, R-C-S, and S-C-R (S means a step control input, R means a ramp control input, P means a parabolic control input, and E means an exponential control input, C means a constant cruise velocity), and suggested an efficient iterative search algorithm with binary search which can find the numerical solution quickly. We performed various computer simulations to show the performance of the energy-optimal 3-step speed control in comparison with a conventional 3-step speed control with a reasonable constant acceleration as a benchmark. Simulation results show that the E-C-E is the most energy efficient 3-step velocity profile pattern, which enables wheeled mobile robot to extend working time up to 50%.

디지털 디바이스를 이용한 이상운동증에서의 운동손상 정량화 방법 (A Digital Device-Based Method for Quantifying Motor Impairment in Movement Disorders)

  • 배수한;윤다은;하재경;권다은;김영구;안민규
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권6호
    • /
    • pp.247-255
    • /
    • 2020
  • Accurate diagnosis of movement disorders is important for providing right patient care at right time. In general, assessment of motor impairment relies on clinical ratings conducted by experienced clinicians. However, this may introduce subjective opinions into scoring the severity of motor impairment. Digital devices such as table PC and smart band with accelerometer can be used for more accurate and objective assessment and possibly helpful for clinicians to make right decision of patient's states. In this study, we introduce quantification algorithms of motor impairment which uses the digital data acquired during four clinical motor tests (Line drawing, Spiral drawing, Nose to finger and Hand flip tests). The step by step procedure of quantifying metrics (Tremor Frequency, Tremor Magnitude, Error Distance, Time, Velocity, Count and Period) are provided with flowchart. The effectiveness of the proposed algorithm is presented with the result from simulated data (normal, normal with tremor and slowness, poor with tremor, poor with tremor and slowness).

대형 동기 전동기 기동실패방지를 위한 여자기회로 과도현상 해석 (Excessive Condition Interpretation of a Exciter Circuit to Prevent Starting Failure of Large Synchronous Motor)

  • 박진훈;조내수;권우현;임성훈;윤경섭;김우현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.739-740
    • /
    • 2006
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, the large synchronous motor is not a self-starting motor. The rotor is heavy and, from a dead stop, it is impossible to bring the rotor into magnetic lock with the rotating magnetic field for this reason, all synchronous motor have some kinds of starting device. A simple starter is another motor which brings the rotor up to approximately 96 percent of it synchronous speed. The starting motor is disconnected and the rotor locks in step with the rotating field. The more commony used starting method is to have the rotor to include a squirrel cage indution winding. This indution winding brings the rotor almost to synchronous speed as an induction motor. So, this paper describes excessive condition interpretation of a exciter circuit to prevent starting failure of large synchronous motor. the large synchronous motor needs safety of it in accordance with operating frequent start and stop. the operating Problem point of synchronous motor appears potential element damage of Exciter circuit because synchronous motor is caused synchronous separation. hence we eliminate it and improve starting toque.

  • PDF

Development of a Novel Direct-Drive Tubular Linear Brushless Permanent-Magnet Motor

  • Kim, Won-jong;Bryan C. Murphy
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.279-288
    • /
    • 2004
  • This paper presents a novel design for a tubular linear brushless permanent-magnet motor. In this design, the magnets in the moving part are oriented in an NS-NS―SN-SN fashion which leads to higher magnetic force near the like-pole region. An analytical methodology to calculate the motor force and to size the actuator was developed. The linear motor is operated in conjunction with a position sensor, three power amplifiers, and a controller to form a complete solution for controlled precision actuation. Real-time digital controllers enhanced the dynamic performance of the motor, and gain scheduling reduced the effects of a nonlinear dead band. In its current state, the motor has a rise time of 30 ms, a settling time of 60 ms, and 25% overshoot to a 5-mm step command. The motor has a maximum speed of 1.5 m/s and acceleration up to 10 g. It has a 10-cm travel range and 26-N maximum pull-out force. The compact size of the motor suggests it could be used in robotic applications requiring moderate force and precision, such as robotic-gripper positioning or actuation. The moving part of the motor can extend significantly beyond its fixed support base. This reaching ability makes it useful in applications requiring a small, direct-drive actuator, which is required to extend into a spatially constrained environment.