• 제목/요약/키워드: Step input control

검색결과 388건 처리시간 0.04초

배터리로 구동되는 이동 로봇의 에너지 소모 최소화를 위한 3-구간 속도 제어 (A 3-Step Speed Control for Minimizing Energy Consumption for Battery-Powered Wheeled Mobile Robots)

  • 김병국;김종희
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.208-220
    • /
    • 2006
  • Energy of wheeled mobile robot is usually supplied by batteries. In order to extend operation time of mobile robots, it is necessary to minimize the energy consumption. The energy is dissipated mostly in the motors, which strongly depends on the velocity profile. This paper investigates various 3-step (acceleration - cruise - deceleration) speed control methods to minimize a new energy object function which considers the practical energy consumption dissipated in motors related to motor control input, velocity profile, and motor dynamics. We performed an analysis on the energy consumption various velocity profile patterns generated by standard control input such as step input, ramp input, parabolic input, and exponential input. Based on these standard control inputs, we analyzed the six 3-step velocity profile patterns: E-C-E, P-C-P, R-C-R, S-C-S, R-C-S, and S-C-R (S means a step control input, R means a ramp control input, P means a parabolic control input, and E means an exponential control input, C means a constant cruise velocity), and suggested an efficient iterative search algorithm with binary search which can find the numerical solution quickly. We performed various computer simulations to show the performance of the energy-optimal 3-step speed control in comparison with a conventional 3-step speed control with a reasonable constant acceleration as a benchmark. Simulation results show that the E-C-E is the most energy efficient 3-step velocity profile pattern, which enables wheeled mobile robot to extend working time up to 50%.

브러시리스 직류전동기 속도 제어를 위한 한계스텝응답 특성을 이용한 Auto-tuning PI 제어 (Auto-Tuning PI control using limitted step response for brushless DC motor speed control)

  • 전장현;전인효최중경박승엽
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.203-206
    • /
    • 1998
  • This paper describes the procedure of getting information about auto-tuning of PID regulator by the injection of high step input, called limited input, during a transient time of control. The key point is that system identification and control could be continuously executed. This means that the system information obtained by limited input despite of system uncertainty can be continuously applied to the PI regulator. Simulation and experiment result of brushless DC motor system having monotone increasing step response demonstrate the usefulness of proposed auto-tuning algorithm.

  • PDF

관류보일러 스팀 온도의 동역학 행렬 제어에 관한 연구 (A Study on Dynamic Matrix Control to Boiler Steam Temperature)

  • 김우헌;문운철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.323-325
    • /
    • 2009
  • In this paper, we present simulation results of Dynamic Matrix Control(DMC) to a boiler steam temperature. In order to control of steam temperature, we choose the input-output variables and generate the step response model by each input variable's step test. After that, the control structure executes on-line control with optimization using step response model. Proposed controller is applied to the APESS(Doosan company's boiler model simulator) and it is observed that the simulation results show satisfactory performance of proposed control.

  • PDF

Self-tuning control with bounded input constraints

  • Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1655-1658
    • /
    • 1991
  • This paper considers the design and analysis of one-step ahead optimal and adaptive controllers, under the restriction that a known constraint on the input amplitude is imposed. It is assumed that the discrete-time single-input, single-output system to be controlled is linear, except for inequality constraints on the input. The objective function to be minimized is an one-step quadratic function, where polynomial weights on the input and output are included. Both the known parameter and unknown parameter (indirect adaptive controller) cases are examined.

  • PDF

비선형 시스템의 계단 입력 응답과 GA를 이용한 퍼지 모델링과 퍼지 제어기 설계 (Fuzzy Modelling and Fuzzy Controller Design with Step Input Responses and GA for Nonlinear Systems)

  • 이원창;강근택
    • 한국지능시스템학회논문지
    • /
    • 제27권1호
    • /
    • pp.50-58
    • /
    • 2017
  • 비선형 시스템 제어에 TSK 퍼지 모델을 이용하는 연구가 많다. 그러나 비선형 시스템을 TSK 퍼지 모델로 표현하기 위해서는 대상 시스템의 비선형 동특성 방정식을 알고 있거나 시스템으로부터 실험으로 입출력 공간에 충분히 분포된 데이터를 얻을 수 있어야 한다. 본 논문에서는 비선형 시스템의 TSK 퍼지 모델링에 계단 입력 응답과 GA만을 이용하는 방법을 제안한다. 연구 대상인 시스템은 제어 입력에 비선형인 경우와 출력에 비선형인 두 경우로 하였다. 제어 입력에 비선형인 경우 여러 입력 값에 대한 계단 입력 응답 데이터들로 모델링 하며, 제어 입력에 비선형인 경우에는 계단 입력 응답 데이터와 제어 입력 값이 0인 경우 응답 데이터를 이용하여 모델링 한다. 또한 제안한 방법으로 구해진 TSK 퍼지 모델로부터 퍼지 제어기를 설계하는 방법도 제시한다. 제안한 방법들을 예제들에 적용하여 모의 실험한 결과 원하는 제어 결과를 얻을 수 있었다.

Robust Back-Stepping Control with Polynomial-type PD input for Flexible Joint Robot Manipulators

  • Lee, Jae-Young;Park, Jong-Hyeon
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.927-932
    • /
    • 2007
  • This paper proposes a robust back-stepping control with polynomial-type PD input for flexible joint robot manipulators to overcome parameter uncertainty. In the first step, a fictitious control is designed with polynomial-type PD input for the rigid link dynamic by the H-infinity control method. In second and third steps, the other fictitious control and real control are designed using saturation control and polynomial-type PD input based on the Lyapunov's second method. In each step, the designed robust inputs satisfy the L2-gain, which is equal to or less than gamma in the closed loop system. In contrast with the previous researches, the proposed method proves performance relations with PD gain from the robust gain. The performance robustness of the proposed control is verified through a 2-DOF robot manipulator with joint flexibility.

  • PDF

Three-Step Input Control Scheme for Minimization of Robot's Vibration

  • 장완식
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.54-64
    • /
    • 1997
  • This paper provides a practical control scheme called three-step input method in order to minimize both robot response time and the resulting residual vibration when the robot manipulator reaches its defined end point. This work is concerned with defining a simple practical method to utilize step inputs to achieve optimum response. The optimum response is achieved by using a self- adjusting input command function that is obtained during a real time processing . The practicality of this control scheme is demonstrated by using an analog computer to simulate a simulate a simple flexible robot and conventional servo controller. The experiments focus on point-to-point movement. Also, this method requires little computational effort through the intelligent use of conventional servo control technology and the robot's vibration characteristics.

  • PDF

6스텝 전압형 인버어터의 입력 전압의 크기과 위상 제어에 따른 브러시리스 직류 전동기의 특성 해석 (Characteristics of a 6-Step Inverter red Brushless DC Motor by Inverter Input Voltage and Phase Shift Control)

  • 김규찬;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.49-52
    • /
    • 1987
  • In this work, the characteristics of a six step inverter fed brushless DC motor are analyzed and the control of amplitude of inverter input voltage and phase shift of a six step inverter is discussed. The effects of the motor performance, efficiency and power factor, are studied.

  • PDF

스텝모터의 진동 저감을 위한 마이크로 스텝 구동에 관한 연구 (A Study on the Micro Stepping Drive to reduce Vibration of Step motor)

  • 신규범;이정우;오준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.448-455
    • /
    • 1996
  • In this study, to reduce vibration of step motor we use Microstep control. Microstep control of stepmotor is usually thought of as an extension of conventional stepmotor control technology. The essence ofmicro stepping is that we divide the full step of a stepmotor into a number of substep called microstep and cause the stepmotor to move through a substep per input pulse. In ideal case, bycontrolling the individual phase currents of a two-phase step motor sinusoidally we can get uniform torque and step angles. But due to the monlinear characteristics of the step motor, we need to compensate current waveform to improve the overall smoothness of the conventional micro stepping system. We implement digital Pulse Width Modulation(PWM) driver to drive step motor and microphone was used for detecting vibration. Driver enables speed change automatically byincreasing or decreasing micro stepping ratio which we call Automatic Switching on the Fly. To compensate the torque harmonics, Neural Networks is applied to the system and we foundcompensated optimal input current waveform. Finally we can get smooth motion of step motor in a wide range of motor speed.

  • PDF

스텝모터의 진동 저감을 위한 마이크로 스텝 구동에 관한 연구 (A Study on the Micro Stepping Drive to Reduce Vibration of Step Motor)

  • 신규범;이정우;오준호
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.118-127
    • /
    • 1997
  • In this study, We use microstep control to reduce vibration of step motor. Microstep control of step motor is usually thought of as an extension of conventional step motor control technology. The essence of micro stepping is that we divide the full step of a step motor into a number of substep called microstep and cause the stepmotor to move through a substep per input pulse. In ideal case, by controlling the individual phase currents of a two-phase step motor sinusoidally we can get uniform torque and step angle. But due to the nonlinear characteristics of the step motor, we need to compensate current waveform to improve the over-all smoothness of the conventional micro stepping system. We implement digital Pulse Width Modul- ation (PWM) driver to drive step motor and microphone was used for detecting vibration. Driver enables speed change automatically by increasing or decreasing micro stepping ratio which we call Automatic Switching on the Fly. To compensate the torque harmonics, neural network is applied to the system and we found compensated optimal input current waveform. Finally we can get smooth motion of step motor in a wide range of motor speed.

  • PDF