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Abstract 

This paper proposes a robust back-stepping control with polynomial-type PD input for flexible joint robot 
manipulators to overcome parameter uncertainty. In the first step, a fictitious control is designed with 
polynomial-type PD input for the rigid link dynamic by the H-infinity control method. In second and third 
steps, the other fictitious control and real control are designed using saturation control and polynomial-type 
PD input based on the Lyapunov’s second method. In each step, the designed robust inputs satisfy the L2-gain, 
which is equal to or less than gamma in the closed loop system. In contrast with the previous researches, the 
proposed method proves performance relations with PD gain from the robust gain. The performance 
robustness of the proposed control is verified through a 2-DOF robot manipulator with joint flexibility.

1. Introduction 

Previous research has proposed various control design 
methods for robot manipulators with joint flexibility. The 
feedback linearization method was used on nonlinear 
static state-feedback and diffeomorphic coordinate 
transformations [1], [2]. And, an adaptive control method 
has been proposed to achieve global convergence of 
tracking errors to zero with all signals remaining 
bounded [3]. However, if measurement signals get out of 
their bounded value, excessive control inputs could be 
generated. Then, the singular perturbation method using 
integral manifold is proposed to overcome these 
limitations [4].  

Recently, the integrator back-stepping method has 
been designed by [5], [6] as a method which provides a 
framework for recursive design of nonlinear and adaptive 
systems by achieving system stability at each step. These 
methods do not need feedback information of 
acceleration, jerk and suitable the cascaded system. 
However the back-stepping control becomes easily 
unstable under the unknown parameters. To get over the 
limitation, the adaptive back-stepping method using 
tuning function, the back-stepping control with neural 
network, etc., have been proposed by [7], [8]. 

In this paper, the dynamic system is partitioned into 

two series cascaded subsystems. And the proposed robust 
controller is designed for these subsystems using the 
back-stepping method. In the first step, a fictitious 
control input is designed such that it consists of the 
dynamic feed-forward input, the robust control input and 
the polynomial-type PD input. These robust control and 
polynomial-type PD input are derived by applying the 
nonlinear H-infinity control method. Their robust gain is 
lead to solving the Hamilton Jacobi Inequality (HJI). The 
solution to the HJI is obtained with a more tractable 
nonlinear matrix inequality (NLMI) method [9], [10]. 
Therefore, the closed-loop system with robust input is to 
achieve 2L -gain which has equal to or less than γ  [11], 
[12].  

In the second step, the fictitious control input of the 
back-stepping method is designed by the polynomial-
type PD and the saturation control method [13]. The 
saturation control, one of nonlinear robust control 
methods, is designed by defining the upper- and lower-
bounds of the unknown parameters. This control input 
minimizes the magnitude of the control in the worst case 
of uncertainty. Then, the designed control input satisfies 
the 2L -gain property in each step. Eventually, the 
overall system becomes an energy dissipative system. 

Since the proposed method gets the acceleration value 
from the relation between acceleration and the link 
dynamics unlike the previous researches, the proposed 
controller does not need the measurement of angular 
acceleration. Also, we define the bounded function of the 
states and parameters in the partial differential equation. 
As a result, the proposed controller does not need the 
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information on the desire jerk. The proposed control 
method needs only the feedback information of velocity 
and position at the link and motor side. And, PD gain is 
derived from the robust gain. As a result, the PD control 
input has directly relation with the robust performance. 
From the simulation result, the proposed control method 
has more robustness performance, stability and 
convergence than existed robust controller [13]. 

Section 2 describes the dynamic equation and the 
property of flexible manipulators. In Section 3, the 
robust back-stepping control is proposed. Section 4 
shows the computer simulation results of the proposed 
control method, which is followed by conclusion in 
Section 5. 

2. DYNAMIC OF FLEXIBLE ROBOT 

MANIPULATORS 

The dynamics of flexible joint robot manipulators is 
represented by 
( ) ( ) ( ) ( )1 1 1 1 1 1 1 2, 0M q q C q q q G q K q q+ + + − =     (1) 

( )2 2 1Jq K q q u+ − =                           (2) 

where 1
nq R∈  and 2

nq R∈  are the link and motor 

angles, respectively. 1( )M q , 1 1( , )C q q , 1( )G q , K , 
J  are the link inertia, the coriolis/centrifugal term, the 
gravity term, the diagonal matrix representing joint 
stiffness, the diagonal matrix representing motor inertia, 
respectively, and u  is the motor torque. Since model 
uncertainty exists in the dynamics, the robust control is 
need for the recursive design. The manipulator 
dynamics, (1) and (2) is a cascaded system and thus can 
be transformed to 

[ ]1
1 1 1 1 1 1 1 1( ) ( , ) ( )K M q q C q q q G q Kq x− + + + =        (3) 

1 2x x=                                      (4) 

[ ]1
2 1 1( ) .x J u K x q−= − −                        (5) 
The system in (1-5) has following properties [14]:  

Property 1: The link inertia matrix ( )1M q  is 

symmetric, positive definite, and both ( )1M q  and 

( )1
1M q−  are uniformly bounded as follows: 

( )1M M qα ≥  and ( )1
1I M qα −≥  where Mα  and 

Iα  are positive constants. 

Property 2: If suitably chosen, ( )1 1,C q q  is 

uniformly bounded such that ( )1 1 1,C q C q qα ≥
 

where Cα  is a positive constant. 

Property 3: The gravitational term 1( )G q  is 

uniformly bounded such that 1( )G G qα ≥  where Gα  
is a positive constant. 

3. ROBUST BACK-STEPPING CONTROL 

3.1 Concept of Back-Stepping Design 
The controller will be designed in the following order. 

At first, fictitious control law 1α  is designed for 1x , 
which is not actual control input of the manipulator. The 
next virtual control law 2α  is designed for 2x . Finally, 
the fictitious control law for actual torque input u  is 
designed in the last procedure. Let’s define the error in 
control, or the difference between the state variables and 
their fictitious controls: 

1 1 1,e x α−                        (6) 

2 2 2e x α−                                  (7) 
where 1α  and 2α  represent fictitious control laws. 

3.2 The First Fictitious Robust Control 
To use the H-infinity control theory, the new state s  

is defined as 
{ }1 1 1 1 1 1 1( )d ds e e q q q q q v= +Λ = − −Λ − = −

      

(8) 

where 1Λ  is a positive diagonal matrix. The robust 
back-stepping control is designed with (3) firstly. In (3), 

1x  is the feedback input and the fictitious control input, 

1α , is designed for 1x . Note that (3) is just the 
manipulator dynamics with rigid joints. Therefore, the 
control input would be 

( ) ( ) ( )1
1 1 1 1 1 1 1

1

ˆ ˆˆ ˆ ,d d d d d d

pd r

K M q q C q q q G q

q u u

α − ⎡ ⎤= + +⎣ ⎦
+ + +

    (9) 

where M̂ , Ĉ , Ĝ  and K̂  are the matrixes with 
estimated parameter values, , m

r PDu u R∈  are the robust 
input, the polynomial-type PD input. With (3) and (9), 
(6) is transformed to 

1 1
1 1 1 1 1 1

ˆˆ ˆ ˆ( )( ) ( , )( )d d d

r pd

e K M q s e K C q q s e
u u w

− −= + Λ + + Λ

− − +  (10)  

where disturbance, w , is 1 1w Mq Cq G= + +  with 
1 1 1

1 1 1 1

1 1 1
1 1 1 1

ˆ ˆ( ) ( ), ( , )
ˆ ˆˆ ˆ( , ), ( ) ( ).

d

d d d

M K M q K M q C K C q q

K C q q G K G q K G q

− − −

− − −

−

− −
 

For applying the nonlinear H-infinity control method, 
(10) represents the generalized form such as  

1 1 1 1 1 1( , )( ) ( )( )d d d r PDs A q q s e B q u u w e e= +Λ + + + + +Λ            
                                          ( 11 ) 
where 1

1 1 1 1 1
ˆˆ( , ) ( ) ( , ),d d d d dA q q M q C q q−= 1

1
ˆ( )dB q M −=  
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1
ˆ( ) .dq K With performance vector z , the generalized 

nonlinear system can be described as 
1 1 1( ) ( )r PDs A s e Bw B u u e e= + Λ + + + + + Λ       (12) 

, 0, 0T T
rz Hs Du H D D D= + = >             (13) 

where H  and D  are the constant matrices of suitable 
dimensions. To show that real control achieves stability 
about the equilibrium point, a positive definite Lyapunov 
function of 

1 ,TV s Ps=  with  0P >                      (14) 
is defined. Derivative Lyapunov function is 

1

1 1 1

2 ( )

2 ( ).

T
r

T
pd

V s P As Bw Bu

s P Bu Be e A e

= + +

+ + +Λ − Λ            (15) 

When matrix D  is not a square matrix, a non-
singular square matrix R  satisfying T TD D R R=  is 

defined. Introducing 2 22 w zγ −  to the above 
equation yields 

2 22
1

2 1

2 22 2

2 2
1 1 1

2 2 2 2
1 1 1 1

{ 1

(1 ) ( ) }

(1 )

2

2 2

T T T T

T T T T T T

T T T
r

T

d p

V w z s P A A P H H

P BB P A A P B R R B P s

Ru R B Ps w B Ps

P e s P e As s PBe

P e P e k e k e

γ

γ

γ γ

−

−

= − + + + +

+ + −

+ + − −

− Λ + − Λ + +

+ Λ + Λ − −

   

(16) 

Let’s assume HJ inequality 
2

1
1

(1 ) 1

[ ] 0

T T T T

T T T T T

W P A A P P BB P

A A H H P B R R B P

γ
−

+ + +

+ + − ≤         
(17) 

is satisfied. Then, the control input that satisfies the 2L -

gain property becomes 1[ ] .T T
ru R R B Ps−= −       (18) 

  And the following inequality is satisfied if 1 1,p dk k  
1

max 1 12 ( )T TP Pλ≥ Λ Λ  So, the inequality satisfied as 
2 2 2 2

2 1 1 1 12 2 0d pW P e P e k e k eΛ + Λ − − ≤
      

(19) 
Therefore, the polynomial-type PD control input as like 
that 1 1 2 2

1 1( ).pd i pu B P s k e k e− −= +
               

(20) 
For the robust and polynomial-type PD control input, 

we obtain the robust gain P  from the HJ inequality. To 
obtain the solution to (17), it is transformed to a 
nonlinear matrix inequality (NLMI) using Schur 
complement. Then the HJ inequality becomes 

2(1 ) 1
0.

T T T T T T T

T T

P A A P H H P BB P A A P B
B P R R

γ⎡ ⎤+ + + + +
≤⎢ ⎥

⎣ ⎦
                                     (21) 

Solving NLMI yields the convex optimization problem. 
If the matrices forming the NLMI are bounded, only a 
finite number of LMIs [15] are to be solved. If the robust 

gain P  that satisfies the inequality exists and 1 0e = , 
the derivative Lyapunov function becomes  

2 22
1V w zγ≤ −                            (22) 

Thus, the closed loop system becomes dissipative [11]. 
And, with 0w = , the system becomes asymptotically 
stable. 

3.3 The Second Fictitious Robust Control 
In the next step, the second fictitious control input, 

2α , is designed for 2x . In order to derive a control law 
for 2x , signal 1e  is differentiated: 

1 1 1 1 1

1 1 1 1 1

(3)
1 2 1 1 1 1 1d d dd d dq q q q qe x q q q q qα α α α α∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂= − − − − −    (23) 
From (3) 

[ ]1
1 1 1 1 1 1 1 1( ) ( , ) ( ) ( ) .q M q C q q q G q K x q−= − − + −    (24) 

Differentiating 1α  with respect time and substituting 

1q  with the right-hand-side of (24), 

[ ]

1 1 1 1

1 1 1 1

1

1

(3)
1 1 1 1 1

1
1 1 1 1 1 1 1( ) ( , ) ( ) ( )

d d dd d dq q q q

q

q q q q

M q C q q q G q K x q

α α α α

α

α ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ −
∂

= + + + +

+ − − + −    (25) 

Thus, (23) becomes 
(3)

1 2 1 1 1 1 1 1 1 1( , , , , , , ).d d d de x q q q q q q xα= −            (26) 
For control input 2α , combining (7) and (26) yields 

1 2 1 2 2 1e x eα α α= − = + −                      (27) 
Differentiating the Lyapunov function of 

2 1 1 1,TV V e Ke= +                              (28) 
results in 

2 1 1 1 1 1 2 2 1
22 22 2 2

1 2

2 2
1 1 1 1 2 2

2 2 ( )

(1 )

2 ( )

T T

T T

T

V V e Ke V e K e

w z w B Ps s W s W

P e s P e As e K e

α α

γ γ γ

α

= + = + + −

= − − − + +

− Λ + − Λ + + Δ + +

(29) 

where 1
1 1.

T TK B P s α−Δ = +  From Properties 1, 2 and 3, 
term 1Δ  can be bounded as  

(
)

1 1 1

1 1 1

1 1

1 1

1 1 1 1 1

(3)
1 1

d d

d

d dq q q

dq q

s q q q

q q

α α α

α α

ξ ∂ ∂ ∂
∂ ∂ ∂

∂ ∂
∂ ∂

Δ = + + +

+ +     (30) 

where 1ξ  is a positive constant, and 

[ ]1
1 1 1 1 1 1 1 1

2
0 1 1 2 1 1

( ) ( , ) ( ) ( )

,

q M q C q q q G q K x q

q x qβ β β

−= − − + −

= + + −  (31) 

with 0β , 1β , 2β , all positive constants satisfying  

0 1 20, 0, 0.I G I C I Kβ α α β α α β α α≥ > ≥ > ≥ >    (32) 
Note that Property 1, 2 and 3 are used in deriving the 
inequality in (32). Equation (30) is can be represented 
the upper bounded function as 
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2
1 1 2 1 3 1 1 4

5 6 1 1 1 1( , , )

s q x q

e e x q q

ξ ξ ξ ξ

ξ ξ ρ

Δ ≤ + + − +

≤ + +            (33) 

where  
1 1

1 1

1

1

1 1 1 1

1 1 1 1

2 2
2 1 1 1 1

3 1 1 2 1 1

(3)
4 1 1 1 0

,

,

d d d

q q

q

d d dq q q q

q q q

x q x q

q q q

α α

α

α α α α

ξ β

ξ β

ξ β

∂ ∂
∂ ∂

∂
∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= +

− = −

= + + +

 

and iξ  for 2,...,6i =  is a positive constant. Therefore, 
(29) is represented by 

2 22
2 1 2 1 1 22 2 ( )T TV w z e Ke e Kγ α≤ − + + Δ +      (34) 

To satisfy the Lyapunov stability, robust control input of 
2 2

2 2 1 2 1 2 1 1 1 1( ) .d pe k e e k e e e K e Kα ρ ε= −Λ − − − +  (35) 
is designed, based on the bound of the stiffness matrix 
as ,KI K KI≤ ≤  where ε  is small value and 2 2,p dk k  
are positive constants matrices. To make the control 
input differentiable, we need to make the second 
modification that redefines the control to be 

2 32 2
2 2 1 2 1 2 1 1 1 1 1( )d pe k e e k e e e e K e Kα ρ ε= −Λ − − − +

  The designed control input considered about the 
stiffness uncertainty. If the stiffness of system is 
changing, the designed control input guarantees the 
negative function in the bound range. Therefore, (34) is 
rewritten such as 

( )
2 22

2 1 2 1 1 2

2 3
1 1 1 1 1 1

2 2

2 ( )

T T

T

V w z e K e e Ke

e K e e K e K

γ

ρ ρ ε

≤ − − Λ +

+ − +        (37) 

where 2Λ  is positive diagonal constant gain matrix. 
The designed control input minimizes the magnitude of 
the control in the worst case, i.e., when the uncertainty is 
its maximum in size. Therefore, if 2 0e =  then 

2 22
2V w zγ≤ − ,  

and with 0w =  becomes asymptotically stable. 

3.4 Actual Robust Control 
Since the actual control input is related to u  in (5), 

differentiating 2e  with respect to time is needed to 
derive a control law for u . Thus, 

1 1
2 2 2 1 1 2( )e x J u J K x qα α− −= − = − − −           (38) 

For a stable control law, a Lyapunov function of 
1

23 2 2 2
TV V e KJe= +  is defined. And, differentiating it 

with respect to time yields  

( )
( )

2 22
3 2 1 1 1 2

2 3
1 2 1 1 1 1 1 1 1

ˆ ( )

( ) .

T

T T

V w z e K u e K x q

e K e e K e e K K e

γ

ρ ε

= − + + − − − Δ

− Λ + Δ − +  (39) 

Term 2Δ  denotes uncertainty which has properties of 

stiffness and derivation values of the designed control 
input 2α . 

2 1 1 2

2 7 1 1 8 2 1 2 2

7 1 1 9 2 10 1 11 2 12

10 1 11 2 2 1 1 2

( )

ˆ ( , , )

( , , )

K x q J

x q e e q

x q q e e

e e x q q

α

ξ ξ α

ξ ξ ξ ξ ξ

ξ ξ ρ

Δ Δ − +

Δ ≤ − +

≤ − + + + +

≤ + +

  (40) 

where iξ  for 7,...,12i = is a positive constant, KΔ  is 
the stiffness distinction. Equation (39) is represented as  

( )2 22
3 2 1 1 1 2

ˆ ( ) .TV w z e K u e K q xγ≤ − + + + − −Δ  (41) 
Thus, for a control law of  

2 2
1 3 2 3 2 1 3 2 2 1 1

2

ˆ ( )

( )
d p du e e k e e k e e K q x

K Kρ μ μ εϕ

= − −Λ − − − −

− +     (42) 

where 3Λ  is a diagonal matrix with positive elements, 

2 2( , ) 2q t e Kμ ρ , ϕ  is small value, 3 3,p dk k  are 
positive constant matrices, then it follow 

( )2 22
3 2 2 2

ˆ ( ) .TV w z e KJ K Kγ ρ μρ μ εϕ≤ − + − +  (43) 

The saturation type control input designed for the 
stiffness uncertainty in acceleration level of motor side 
which is relation to the link side. If du  is designed from 
the robust nonlinear method, the Lyapunov function 

satisfied 2 22
3 .V w zγ≤ −  The control law in (42) 

guarantees that the closed-loop system is dissipative at 
the equilibrium point, i.e., 1 2 0s e e= = = . Therefore, 
the overall system is said to be 2L -gain less than or 
equal to 1 and guarantees the asymptotically stable with 

0w = . 

4. SIMULATION 

The performance robustness of proposed controller is 
verified through simulations against continuous 
parameter variations, random parameter changes, and an 
external impulse disturbance. A 2-DOF flexible joint 
robot manipulator is assumed to have uniform links. 
Table I shows the nominal values of its physical 
parameters. 

 

Table 1 Parameters of the manipulator in simulation 
symbol 1m 2m 1l 2l  1k  2k  
value 6 4 0.30 0.30 1,500 1,200 
unit kg kg m m Nm/rad Nm/rad

 
 

The performance of the proposed controller is 
compared with that of the PID controller with the 
dynamic feed-forward compensation, and that of the 
robust nonlinear H-infinity controller based on the back-

930



 

   
 

5

5

stepping method in [13]. Initially, the links of the 
manipulator are stretched horizontally. The desired 
motion of the first link is to turn 180°in the CCW 
direction, and that of the second link is to turn 90°in the 
CCW direction relative to the first link. First, the effect 
of a constant uncertainty is measured. It is assumed that 
the actual values of the inertias and the joint stiffness are 
20% higher than the measured. The resulting motions of 
the manipulator with various controllers are shown in Fig. 
1(a) 

 
(a) 

 
(b) 

Fig. 1 Angular velocity under uncertainty and impulse 
disturbance at t=2.3s: (a) link velocity (b) error in link 
velocity (RC1: the proposed controller, solid line, RC2: 
the other robust controller, dash & dot line, DC: the 
model based dynamic controller, dash line)    

  The model-based dynamic controller, with feed-
forward compensation, becomes unstable. The robust H-
infinity controller of [13] perform better than the model-
based dynamic controller. However, its tracking error is 
significant. On the other hand, the proposed controller 
exhibits very close tracking to the desired trajectory. The 
advantage of the proposed controller over the others is 
more apparent when convergence to the desired velocity 
is evaluated after an impulse disturbance at t=2.3s, as 

shown in Fig. 1(b). 

 
(a) 

 
(b) 

Fig. 2 Angular velocity (a) and velocity error (b) under 
the continuous parameter variations with initial 
uncertainty (a: the sine function inertia, b: the random 
function inertia) 
 

Figure 2 shows the robust performance and stability in 
case of the sinusoidal fluctuations of the parameters, 
whose peaks are about 30% of their nominal values. The 
tracking performance of the proposed controller is 
compared with that of the H-infinity controller used in 
[13]. Note that in Fig. 2(a) the transient response of the 
H-infinity controller of [13] is unsatisfactory: its 
maximum overshoot is almost 100%. Figure 2(b) show 
that the effect of fluctuating parameter values has much 
less effects on the proposed controller. Again, it also 
shows that the effect of an impulse disturbance quickly 
dies for the proposed controller, while it is persistent for 
the H-infinity controller of [13]. 
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(a) 

 
(b) 

Fig. 3 Angular velocity (a) and position error (b) in 
Joint_1 under the gain change and the parameter 
uncertainty 

 

Fig. 3(a) shows the performance relation according to 
lambda gain. Fig. 3(b) shows the position error bound in 
parameter uncertainties which are Mass, Inertia and 
Stiffness at the same time. 

5. CONCLUSION 

We proposed a robust back-stepping control method for 
robot manipulators with flexible joints which uses the 
nonlinear H-infinity and the saturation control method. 
In each design step, the robust input is designed against 
the parameter uncertainty by satisfying the 2L -gain 
property. The acceleration signal is defined from the 
relations in the link dynamic equation. The desire jerk is 
assumed to be constant by defining the bounded function. 
Thus, the proposed controller does not need to measure 
the acceleration for the feedback and to design the jerk 
information as compared with the previous researches. 
From the simulation result, the polynomial-type PD input 
has directly performance relation with robust gain. Also, 
the proposed control method has more performance 

robustness, stability, and convergence than many existing 
robust controllers under the parameter uncertainty, 
variations and impulse disturbances. 
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