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Abstract

This paper considers the design and analysis of one-step ahead op-
timal and adaptive controllers, under the restriction that a known
constraint on the input amplitude is imposed. It is assumed that the
discrete-time single-input, single-output system to be controlled is
linear, except for inequality constraints on the input. The objective
function to be minimized is an one-step quadratic function, where
polynomial weights on the input and output are included. Both the
known parameter and unknown parameter (indirect adaptive con-

troller) cases are examined.

1 Introduction

In practice, the inputs to a system are often constrained. The
outputs of a controller that are meant to drive the system cannot be
faithfully applied, due to physical limitations of the actuators.

An input-constrained minimum variance control law was de-
veloped by Goodwin [1]. Unfortunately, this control law was not de-
rived in direct implementable form. Makila (2] developed an input-
constrained self-tuning regulator for MIMO system but they used
simple saturation for implementation.

Some performance properties of adaptive controllers which use
simple saturation to impose input constraints are known, for the
deterministic case [3],[4],(5].

In this paper we consider self-tuning control problem for the
case when the system is disturbed by noise and the inputs to the
system is constrained. Input-constrained self-tuning controller is
developed and convergence conditions for the adaptive controller

with input constraints are derived.

2 One-Step Optimal Control with Input

Constraints
Consider a linear discrete-time SISO system which is described by:

A(g™Hy(t) = ¢~*B(g~)u(t) + =(t) (1

where ¢! is the backward shift operator. That is, g~ 'y(t) 2 y(t—1).
Here d is the system dead time, y(¢) is the output, u(t) is the input,
and z(t) is a general disturbance. Often special assumptions on z(t)
are made, such as 2(t) = C(g~)w(t), where w(t) is an uncorrelated
zero mean random process. Here A(g™'), B(¢~') and C(g™') are

polynomials of order of n, m and ! respectively such that:
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A(g™) = l4ai¢ 4. . +ang™" (2)
B(g™h) = bo+bigTl 4. +bmg™" 3
Clg™) = l+eagl+.. . +ag”! (4)
where by # 0. The system input is subject to the constraint:
My < u(t) < My (5)

where M is a finite input lower bound and My is a finite input
upper bound.

We first consider the input-constrained one-step ahead con-
trol problem with known system parameters. A nonlinear optimal
control iaw is derived which minimizes an one-step quadratic objec-
tive function, subject to explicit constraints on the magnitude of the
control input.

We consider the following one-step quadratic objective func-

tion:

E{[Pe)y(t +d) - Stg=")y" (¢ + )P

(R u@)?|7:}

+

(6)

where {y* (1)} is a specified reference trajectory and P(g~!), S(¢™!),
R(q~") are polynomials in ¢~* of the form:

P(@™) = po+pug~ 4. +pmg ™, po#0 (7
S@") = sotsig 4. +smg™ (8)
R(gY = ro+rgl+. . 4rmg™ 9)

Note that this is the Generalized Minimum Variance (GMV) control
{6] type objective function. The minimization of (6), subject to
(1), (5) is over the class of admissible functions, C, which satisfy
(1), (5) and the requirement that u(?) is a function of observations
{y(®),pt - 1),...

output feedback control laws are allowed.

,u(t — 1),u(t — 2),...} only. That is, only causal

We now find the optimal I* and u(t) satisfying:

I'= ul(rtl)lé]c 1 (10)
Consider the Diophantine identity:
T(g)P(¢7!) = E(g7)A(@™ ) + ¢ F(g™) (1)

‘where E(g~!) and F(g~!) are uniquely determined from T'(¢™!),

A(q™1), P(¢~') and d. Here T(¢™!) is a stable polynomial which
will be used for tailoring the disturbance effects. Using (11), the

system equation (1) can be rewritten as:

TPy(t +d) = Fy(t) + Gu(t) + Ez(t +d) (12)



where G(¢~1) £ E(g~1)B(¢~!). Dividing both side by T yields

Pyt +d) = gou(t) + Fy () + Gu'(t — 1) + ?;(t +d)  (13)

where y 2 y/T, v £ u/T, and G(g~!) 2 goT(¢"") + ¢~'G'(¢™1)
defines G'(¢~1) . Substituting (13) into the objective function (6)

gives
1=€{foou(t) + Fy'0)+G(t-1)-Sy'(t+d)+ %z(t +d)?

+ [rou(®) + R'u(t - DP|F:} (14)

where R(¢™') 2 ro + ¢ ' R'(q™}) defines R'(¢~1).

Let us assume that —fz(t) is an zero mean uncorrelated se-
quence, independent of inputs {u(?),u(t —1),...} and outputs {y(t),
y(t — 1), ...}. This will happen when z(t) = C(g~')w(t). Then we
can convert the functional minimization of (10) into an pointwise

minimization with respect to u(t):

=, {loou®) + FY(+GW(e-1) -5y +df

+ [rou(t)+ Ru(t - 1)]2} (15)

Note that this is a deterministic optimization problem. The objective
function is single variable quadratic function with respect to current
control input u(t). Let v(t) be the unconstrained optimal solution,

obtained by setting 8J*/8u(t) equal to zero at each time t:

gov(t)+ Fy'(t) + Gu'(t—1)-Sy"(t+d)

+ gg[ruv(t)+R'u(t—1)]=0 (16)
0

Then the constrained optimal solution u(t) satisfying (15) can be
written as:

u(t) = satfo(t), My, My] an

Note that {u(t),u(t—1),...} are the past, actually applied, saturated
control inputs. Multiplying (16) by T(¢™!), we get the following

implementable controller form:

(go + %) To(t) = TSy'(t+d)~ Fy(t)
TR P
- (G + g_oTR) wt-1)  (18)
u(t) = sat[v(t), My, My) (19)

The one-step objective function I with assumption on the dis-
turbance T:(t) is minimized by the direct implementable nonlinear
control law (18)-(19). This control law gives a closed-loop system
satisfying

2
(BP + ?RA) yt+d) = BSy(t+d)- (go + ;—°) Bsu(t)
0 0

G+ RTR

=Lzt +d)

T (20)

(BP+ ;—ZRA> ot) ASy"(t+d) — gz(t)
+ (BP (g0 - %R’q‘l)A) 5(t) (21)

where Su(t) = v(t) — u(t).
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The closed-loop response to the general disturbance z(2) is tai-
lored by the polynomial T(¢™"). Therefore T(¢™!) can be used as
a design polynomial, to improve disturbance rejection of the closed-
loop system response. This is discussed for unconstrained systems
by Clarke [7]. For most practical unconstrained applications, T(g~!)
can be taken as a fixed first-order polynomial where — is a low-pass
filter (Clarke et al. [8]). We have extended this to the constrained
input case. The closed-loop equations have different output reg-
ulation errors due to the input bound constraint, for each choice

T Thus

we can use T to filter the output regulation error due to the in-

of T. The output regulation error is filtered through

put saturation. This is true even in the noise free case. The point
here is that by choice of T we handle the effects of the disturbance
when it interacts with the constraints, and alter the regulatid}l error
as desired. Therefore T can be used as design polynomials which
are determined to improve the input-constrained controller perfor-
mance. Of course, a bad choice of T could make things worse. A
design method of (g™~ ) based on the stability property of the input-
constrained control system, is given in [9]. For the colored noise case
(i-e. 2(t) = C(g~ )w(t)), T = C yields the minimum output variance
of the Fz(t) in the objective function.

3 Adaptive Control with
Input Constraints

We uext consider the control of input-constrained systems whose
parameters are unknown. Specially, we investigate the convergence
and stability attributes of input-constrained adaptive control for the
stochastic SISO case with a MV (Minimum Variance) objective func-
tion. Without the input constraints, the asymptotic properties of
this algorithm are known. In Goodwin et al. [10], global convergence
is proved. Here we extend these results to the input-constrained case.
We assume that the disturbance term z(t) is modeled as

C(gV)w(t) and make the following assumptions about the system
(1):

A.1 System delay d is known.

A.2 Upper bounds for n, m and [ are known.

A.3 C(q™!) is stable polynomial.

Note that we do not assume stability of B(¢~*) here as in Goodwin
et al. [10), because the ccnstraint on the input u(t) makes this
unnecessary. The following independence and variance assumptions

are made on the process w(t):

B.1 E{w(t)|Fe=1} =0 a.s.

B.2 E{w(t))|Fio1}=0®  as.

N
B.3 limsup Zw(t)2 < oo a.s.
0 =y
The indirect adaptive control version of the one-step optimal

control law (18)-(19) with MV objective function is given by:



Clg™, )y’ (t +4d) F(g™Y, 0y(t) + Go()C(g™1, t)u(t)

+G'(g~1, tyu(t - 1) (22)
u(t) = satfv(t), M1, My) (23)

where
Glah 1) = 5u(OC(g L ) + ¢4 G (g™ 1t) (29)

Here C(g™1, 1), F(g™1,t), G{g~1,1) are estimates of C(g~1), F(g™'),
G(g™!) respectively. Next we define (t) as

Clg. 1)g(t +d) & (g, )y(t) + G(g™", )u(t) (25)
This can be written in the form:
#(t +d) = $()Th(D) (26)
where
) = W), .yt —n+1),ult),...,ult —m+1),
- Ht+d- ,...,=g§t+d =D
8t) = [fol®), .\ Famr(®)Golt), - Gm-1(t),
aft),....a@)’ (27

Note that 7(t) is not needed by the controller (22). It is a quantity
which corresponds to the prediction of output y(t) based on the
estimated parameters. To estimate the system parameters 6(t),
a stochastic gradient method {10] is used. Since y(t) is filtered
through €(g~1,1), divergence problems can occur if C(g~?,t) is not
kept within its necessary stability region. Because C(g~!,t) is an
estimated quantity, it can become unstable as a result of noisy or bad
data, or a lack of adequate excitation. To prevent this, an orthogonal
projection of the parameter estimates onto a set such that the roots
of the estimated C(¢g~*, ) polynomial lie strictly inside the unit circle
will be done whenever C(¢~!,t) becomes unstable.
We summarize the above as follows:

Input-Constrained Adaptive Control Algorithm

gty =6t - d) + —— ( - d)[y(t) — ¢(t - d)Th(¢ - )]
(28)
6(t) = Pjlf' (1)} (29)
rt—d)=rit—d—1)+¢(t~d)Tgt—d), r0)=1(30)
Clg!, Oy" (t+d) = F(g™1,0)y(t) + do(t)C(g, )u(t)
+G'(g7t thult - 1) (31)
u(t) = sat[v(t), My, My) (32)
§( + d) = ¢(t)Td(2) (33)

where @ > 0 and Pj[-] denotes an operator which will project §(2)
orthogonally onto the surface of a set such that #(2) remains within
the stability region of C(t,¢™!).

The approach used by Goodwin et al. [10] will be utilized here

to prove convergence of the above adaptive control algorithm. First,
we define the following variables:

&(t) (1) - #(t)

2
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y(t) — (¢t ~ )Té(t — d)

Et+d)-&(t+d)

(34)

114

£(t)

Note that &(t) corresponding to prediction error and (t) corresponds

(35)

to deterministic part of the prediction error. The following lemma

is key to proving convergence of the adaptive control algorithm.

Lemma 1 Subject {o the system assumptions set (A) and the noise

assumptions set (B), and provided that
Cla) -3 (36)

is strictly positive real, then the algorithm (28)-(33) ensures that with
probability 1,

(1)
li:nsup 16(2) - 8ol)? < (37)
(i)
K 1S —
Nm Ez(t) =0 as (38)

Proof: See [9].

That is, as long as the constant d in the algorithm is chosen,
relotive to noise coloring polynomial C(g~*), such that the stability
requirement (36) is met (as { — oo), the norm of parameter esti-
mation error will be bounded and the normalized deterministic part
of prediction error will converge to zero. The main 1esult is the

following:

Theorem 1 Let the assumptions sels (A) and (B) hold for the sys-
tem (1)-(5). Further, assume that [C’ g ) - —] is strictly positive
rea! and that algorithm (28)-(33) is used. If the open-loop system is
asymptotically stable, then with probability 1:

(8) The input-constrained adaptive control system (1), (28)-(33) is

globally convergent in the following sense:

(i)
LN
1.;{nﬂs: WZ ¥(1t)? <o (39)
o
ll]gnf::pNZu(t)z < o0 (40)
(i)

N
Jim  E+ =g+ DFIF) =7 ()

(b) If there exists an integer T > 0 such that My < v(t) < My for
allt > 7, then
1 ¥
Aim, 5 e+ d) -

yE+d)R) =1 (42)

where ¥2 is the minimum possible mean square conirol error
achievable with any causal linear feedback control (this includes
the controller using the true system parameters). That is, if
asymplotically the constraint is inactive, then the controller

converges to the unconstrained MV controller.



Proof: (i) First, using the fact that the system is asymptotically
stable and using assumptions (A.3) and (B.3), it follows that there

exists an N; such that

—Z (t+d)? < K‘

=0

()’ +K,, N>N as.  (43)

Thus, since M < [u(t)] < My < oo, it follows that

N
limsup % ; u(t)? < o0 (44)
and
1,
limsup = ;y(i) < oo {45)

(ii) From Lemma 1 we know that #(g~!,£),G(¢"!,t) and
€(g~1,1) are bounded and C(g™1,1) is kept within the stability re-
gion by the orthogonal projection. Therefore from (25) it follows
that there exists an N’ such that

—Zy<t+d>’ < ——Zy(z

—NlZu(t)z-}-%%, N>N' as.

=0
(48)
Hence using the definition of r(N) and é(t), it follows that
N
W) Ilivi u(t)’ + Ky for N>N' as.  (47)
1=0
So
limsup r(v) < 00, (48)
N—co N.
and hence
1
l}vn'_l.lglof (N) > %> 0 (49)
Then from Lemma 1 we have that
1 N
D o e
1\11le N Z;z(t) =0 as. (50)
Now, from (34) and (35)
(t)=yt+d)—glt+d)—E(t+d) (51)
Hence
E{(y(t + d) = §(t + d))*| 7} = 2t + 7 as. (52)

and from (50)

lim —ZE( (t+d) - §(t+d)?|F} =4 as. (53)

N=oo N

which completes the proof.
(b) The fact that My < v({} < My implies that

v(t) = u(t) = sat[v(t), My, My), forall t>T (54)

which implies §i(t + d) = y*(t + d). Thus

N
Jim_ 7\,1- ; E{(yt +d)— "t + d)YF:} =+ as. (55)

This completes the proof.

From part (b) of Theorem 1 we can see that the input-constrained
control law converges to the unconstrained control law if it remains
inside of bound after certain amount of time 7.

Note that we can establish Theorem 1 for the case of known
system parameters. This implies that input-constrained adaptive

control algorithm (28)-(33) has a self-tuning property.

4 Conclusion

This paper considers the design and analysis of one-step optimal and
adaptive controllers, under the restriction that a known constraint
on the input is imposed. An input-constrained control law which
minimizes one-step quadratic objective function with additional fil-

ter, subject to the input constraints, is derived. The convergence of

output prediction error, model parameters and tracking error and
a self-tuning property of the constrained adaptive control algorithm
(using the Minimum Variance cost function and a stochastic gradient

parameter estimation method) are also established.
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