• 제목/요약/키워드: Steering rate

검색결과 167건 처리시간 0.031초

Portfolio 분석을 활용한 자동차 검사의 부적합항목에 대한 위험도분석 (A Risk Analysis on the Error Code of Vehicle Inspection Utilizing Portfolio Analysis)

  • 최경임;김태호;이수일
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.121-127
    • /
    • 2012
  • Vehicle Inspection System is to examine the condition of vehicle regularly at the national level to protect lives and properties of the people from traffic accidents due to vehicle's fault. However, the vehicle inspection method, criteria, period and effectiveness have become a controversial issue, because of examining safety management of vehicle by drivers regardless of regular vehicle inspection. Therefore, the aim of this study is to investigate vehicle inspection timeliness and risk level of inspection items through basic statistical survey and portfolio analysis. The results of the research through practical analysis are: (1) The inspection failure rates between 3 and 6 model year tend to increase. (2) The failure of inspection items for safety highly impacts on traffic accident rate in terms of accident risks. (3) According to the result of portfolio analysis, faulty items located 1st quadrant are riding device, driveline system, controlling device, steering actuator, and fuel system.

슬라이딩 모드 제어를 이용한 시각센서 기반의 차선변경제어 시스템 설계 (Vision-Based Lane Change Maneuver using Sliding Mode Control for a Vehicle)

  • 장승호;김상우
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.194-207
    • /
    • 2000
  • In this paper, we suggest a vision-based lane change control system, which can be applied on the straight road, without additional sensors such as a yaw rate sensor and a lateral accelerometer. In order to reduce the image processing time, we predict a reference line position during lane change using the lateral dynamics and the inverse perspective mapping. The sliding mode control algorithm with a boundary layer is adopted to overcome variations of parameters that significantly affects a vehicle`s lateral dynamics and to reduce chattering phenomenon. However, applying the sliding mode control to the system with a long sampling interval, the stability of a control system may seriously be affected by the sampling interval. Therefore, in this paper, a look ahead offset has been used instead of a lateral offset to reduce the effect of the long sampling interval due to the image processing time. The control algorithm is developed to follow the desired trajectory designed in advance. In the design of the desired trajectory, we take account of the constraints of lateral acceleration and lateral jerk for ride comfort. The performance of the suggested control system is evaluated in simulations as well as field tests.

  • PDF

초음파 섹터 B-스캐너의 개발(I)-프론트 엔드 부분- (Development of Ultrasound Sector B-Scanner(I)-Front End Hardware Part-)

  • 권성재;박종철
    • 대한의용생체공학회:의공학회지
    • /
    • 제7권1호
    • /
    • pp.59-66
    • /
    • 1986
  • 개발된 초음파 섹터 B-스캐너 시제품에서 프론트 엔드 하드웨어는 초음파펄스의 송신 및 수신을 담당하는 부분으로서 변환자에 펄스를 인가하는 펄스발생기, 진폭이 미약한 애널로그 신호를 처리하는 수신회로 및 기계식 섹터 탐촉자를 구동하는 조향제어회로의 3부분으로 크게 나눌 수 있다. 본 논문에서는 위 3부분의 기능 및 설계에 관하여 기술한다. 완성된 프론트 엔드 하드웨어의 특징 가운데 중요한 몇가지만 살펴보면, 링다운 시간을 감소시키는 펄스발생기를 사용하여 축방향의 해상도를 증가시켰고 시가변이득 증폭기에 필요한 제어전압을 여러 형태로 만들 수 있으며 탐촉자내에 있는 감지기의 출력파형을 기준으로 본 초음파 진단장치의 모든 시스템에 공급될 레이트 펄스를 만들어 주는 것이라고 말할 수 있다.

  • PDF

차량 성능 및 안정성 향상을 위한 $H_{\infty}$ 요 모멘트 강인제어 ($H_{\infty}$ Robust Yaw-Moment Control Based on Brake Switching for the Enhancement of Vehicle Performance and Stability)

  • 안우성;박종현
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1899-1909
    • /
    • 2000
  • This paper proposes a new $H_{\infty}$ yaw moment control scheme using brake torque switching for improving vehicle performance and stability especially in high speed driving. In the scheme, one wheel is selected, depending on the vehicle states, at which a brake torque for control is applied. Steering angles are modeled as a disturbance to the system and the $H_{\infty}$ controller is designed to minimize the difference between the performance of the vehicle and that of the desired model. Its performance robustness as well as stability robustness to system parameter variations is assured through ${\mu}$-analysis. Various simulations with a nonlinear 8-DOF vehicle model show that proposed controller enhances the vehicle performance and stability under disturbances and parameter variations as well as under the normal driving condition.

Lateral Vehicle Control Based on Active Flight Control Technology

  • Seo Young-Bong;Choi Jae-Weon;Duan Guang Ren
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.981-992
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle (CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to follow a chosen variable without significant motion change in other specified variables. The analysis techniques for decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling (i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계 (Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion)

  • 김상태;서정민;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.

능동비행제어기술에 기반한 자동차 횡방향 제어 (Lateral Vehicle Control Based on Active Flight Control)

  • 서영봉;;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제12권10호
    • /
    • pp.1002-1011
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle(CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to commend a chosen variable without significant motion change in other specified variables. The analysis techniques fur decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling(i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

퍼지제어기를 이용한 자율주차시스템 구현에 관한 연구 (A Study on Designing Autonomous Parking Assistance using Fuzzy Controller)

  • 추연규
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.70-76
    • /
    • 2013
  • Recently, the performance and function of electrical and electronic system in automotive vehicles is developing at a rapid rate with the advancement of IT technologies. Combined together with micro-controller and sensor technologies, the Vehicle Smart System (VSS) being developed to improve driver's convenience and comfort has been employed to a variety of applications. In addition to the convenience system, the Auto-parking Assistance System (AAS) that is now attracting a new attention has been already applied to some vehicles, but it is currently limited to luxury car models only. In this paper, we present a fuzzy controller that enables autonomous parking assistance without the AAS. The controller can perform the assistance with information provided from moving status, current position and steering angle as one is able to park a car based on his/her experience and knowledge for driving and parking. We have evaluated its performance of the proposed controller by simulation and tested the excellence of the controller by building a model vehicle embedded with the micro-controllers.

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.

고속도로에서 발생한 2차 교통사고의 특성분석 (The Characteristics of Secondary Crashes Occurred on Expressways in Korea)

  • 어지영;김도경;이유화
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.139-147
    • /
    • 2013
  • PURPOSES : This study aims to draw differences between primary and secondary crashes by comparing crash characteristics and to identify the unique characteristics of secondary crashes for making better effective countermeasures to reduce secondary crashes. METHODS : The characteristics of secondary crashes were compared to those of primary crashes through a two sample proportional test (z-test). RESULTS : The results showed that vehicle-to-vehicle crashes and vehicle-to-person crashes are dominant crash types in secondary crashes. Compared to primary crashes, secondary crashes were likely to occur during nighttime. With respect to season and weather, the proportion of secondary crashes occurred during winter and in snowy weather is relatively higher than that of primary crashes. The main causes of primary crashes were found to be drowsiness, speeding, and exaggerated steering control, whereas main factors affecting the occurrence of secondary crashes were negligence of keeping eyes forward and no keeping a safe distance as expected. CONCLUSIONS : The characteristics affecting the occurrence of secondary crashes are different from those of primary crashes, indicating that proper countermeasures should be established to prevent the occurrence of secondary crashes on highways.