• 제목/요약/키워드: Steel-Concrete Composite Column

검색결과 521건 처리시간 0.02초

친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구 (Environmental Friendly Connection of Composite Beams and Columns)

  • 홍원기;김진민;박선치;임선재
    • KIEAE Journal
    • /
    • 제7권6호
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

Advanced numerical model for the fire behaviour of composite columns with hollow steel section

  • Renaud, C.;Aribert, J.M.;Zhao, B.
    • Steel and Composite Structures
    • /
    • 제3권2호
    • /
    • pp.75-95
    • /
    • 2003
  • A numerical model is presented to simulate the mechanical behaviour of composite steel and concrete columns taking into account the interaction between the hollow steel section and the concrete core. The model, based on displacement finite element methods with an Updated Lagrangian formulation, allows for geometrical and material non linearities combined with heating over all or a part of the section and column length. Comparisons of numerical calculations made using the model with 33 fire resistance tests show that the model is able to predict the fire resistance, expressed in minutes of fire exposure, of composite columns with a good accuracy.

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

Shear transfer mechanisms in composite columns: an experimental study

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제7권5호
    • /
    • pp.377-390
    • /
    • 2007
  • In the design of concrete filled composite columns, it is assumed that the load transfer between the steel tube and concrete core has to be achieved by the natural bond. However, it is important to investigate the mechanisms of shear transfer due to the possibility of steel-concrete interface separation. This paper deals with the contribution of headed stud bolt shear connectors and angles to improve the shear resistance of the steel-concrete interface using push-out tests. In order to determine the influence of the shear connectors, altogether three specimens of concrete filled composite column were tested: one without mechanical shear connectors, one with four stud bolt shear connectors and one with four angles. The experimental results showed the mechanisms of shear transfer and also the contribution of the angles and stud bolts to the shear resistance and the force transfer capacity.

철근콘크리트 기둥과 철골 보 합성구조 접합부 시스템 개발 (Development of Reinforced Concrete Column and Steel Beam Composite Joints)

  • 김도균;정하선;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.691-698
    • /
    • 2001
  • Recent trends in the construction of long span or tall building frames feature the increase use of composite members that steel and concrete is functioning together in what terms of mixed structural systems. One of such systems, RCS (reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope detail to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. The results show that specimens with the U-type bearing reinforcement detail developed in this study enhanced the bearing strength by 1.20-1.50. The U-type reinforcement is the effective details to increase joint bearing strength compared to others like vertical reinforcement welded to beam flanges.

  • PDF

Evolution of concrete encased - CFST column: A comprehensive review on structural behavior and performance characteristics

  • Namitha Raveendran;Vasugi K
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.619-645
    • /
    • 2024
  • In the construction industry, composite structures have revolutionized traditional design principles, opening innovative possibilities. The Concrete Encased - Concrete Filled Steel Tubular (CE-CFST) column stands out as a distinctive composite structure, offering structural stability and resilience for various engineering applications. Comprising Reinforced Concrete (RC) and Concrete Filled Steel Tubular (CFST) components, CE-CFST columns are valued for their inherent properties, including ductility and rigidity, CE-CFST is commonly used in the construction of bridges, high-rise buildings, and more. This article aims to provide a concise overview of the evolutionary development of CE-CFST columns and their performance in structural applications. Through a comprehensive review, the study delves into the behaviour of CE-CFST columns under different scenarios. It examines the influences of key parameters such as size, infills, cross section, failure causes, and design codes on the performance of CE-CFST columns, highlighting their enhanced functionality and future potential. Moreover, the review meticulously examines previous applications of CE-CFST columns, offering insights into their practical implementation.

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.

PC 기둥-H형강보의 볼트접합부에 관한 실험적 연구 (An Experimental Study on The Bolted Connection Between H-Beam and Precast-Concrete Column)

  • 조은영;박순규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.181-185
    • /
    • 2003
  • The composite structural system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however, has also a lot of problems in earthquake-proof capacity and construction process because it is wet method of construction. So, this paper proposed PCS(Precast Concrete Column and Steel Beam) structural system with dry method of construction. Purpose of this study is to enhance merit and control failure mechanism by installing Dog-Bone on H-beam.

  • PDF

준정적 실험에 의한 SRC 합성교각의 내진성능 평가 (Seismic Performance Evaluation of SRC Column by Quasi-Static Test)

  • 한정훈;박창규;심창수;정영수
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.85-94
    • /
    • 2006
  • 지진지역의 교량교각에 대한 설계에서 요구연성도는 가장 중요한 요소이다. 철근콘크리트 교각의 내진성능 향상을 위해서 강관으로 교각을 감싸거나 후프철근과 같은 횡방향 철근을 이용하여 교각을 구속함으로써 교각의 연성도를 증가시키는 방안이 필요하다. 강재 매입형 교각을 이용하는 것은 RC 교각 내진성능을 향상시키는 유용한 방법중의 하나이다. 이 논문에서는 강재 매입형 합성교각의 내진성능을 평가하기 위하여 단일강재와 복수강재가 매입된 합성교각에 대하여 준정적 실험을 수행하였다. H형강이 매입된 실험체와 부분 충진된 원형강관이 매입된 단면으로 구성되어 총 8기의 실험체를 제작하였다. 실험변수는 심부구속 철근비, 매입 강재의 종류와 양으로서 이에 대한 변위연성도를 분석하였다. 실험결과 강재매입으로 인하여 교각의 변형능력이 증가하였으며 특히 원형강관이 매입된 교각의 변위연성도와 횡방향 강도가 가장 크게 나타났다.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.