• Title/Summary/Keyword: Steel pile

Search Result 377, Processing Time 0.025 seconds

Joint Stability and lateral behavior of composite piles (복합말뚝 연결부 안정성 평가 및 수평거동특성 분석)

  • Shin, Yun-Sup;Park, Jae-Hyun;Hwang, Ui-Seong;Cho, Sung-Han;Chung, Moon-Kyung;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.553-558
    • /
    • 2010
  • The behavior of composite piles composed of steel pipe pile in the upper part and concrete pile in the lower part by a mechanical splicing joint was examined by field lateral load tests and bending tests. A total of 7 piles including two instrumented piles for bending test were installed. The soil profile consists of soft clay with weak silt with shallow groundwater level. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. This paper presents the composite pile behavior with various portions of the upper steel pile: 0, 20, 30, and 45% of the pile embedded pile length. Three-point bending tests were performed to investigate the stress-strain relation at the mechanical joint. Based on these test results, the behavior of composite piles with various upper steel pile length are evaluated and the stability of mechanical joints are examined. Through comparisons with results of field load tests, it was found that lateral load carrying capacity of the composite piles increased and deflections of the composite piles decreased with increasing the upper steel piles. The mechanical joint was proved to retain its structural stability against the tested load conditions. Economical benefits of composite pile of this kind can be gained by setting adequately the length of the upper steel pipe piles.

  • PDF

PC말뚝 이음시공용 강관이음부의 적정규격 결정에 관한 연구

  • 임종석;한찬균
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.03a
    • /
    • pp.103-114
    • /
    • 1992
  • The jointing method of PC pile installation, which utilizes steel sleeve, is most popular for the deep bearing stratum( deeper than 15m ) or the irregular bearing stratum depths. However, this method has some difficulties in safety because there is no optimum standards of steel sleeve. This research attempts to determine the optimum standard of steel sleeve for 350mm PC pile, which is most widely used, through bending moment test designated by KS and numerical analysis using finite element method. According to the results, the optimum length of steel sleeve is three times longer than diameter of pile, and the thickness of steel sleeve is more than 2.5mm.

  • PDF

Estimation on End Vertical Bearing Capacity of Double Steel-Concrete Composite Pile Using Numerical Analysis (수치해석을 이용한 이중 강-콘크리트 합성말뚝 연직지지력 평가)

  • Jeongsoo, Kim;Jeongmin, Goo;Moonok, Kim;Chungryul, Jeong;Yunwook, Choo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.5-15
    • /
    • 2022
  • Conventionally, because evaluation methods of the bearing capacity for double steel pipe-concrete composite pile design have not been established, the conventional vertical bearing capacity equations for steel hollow pile are used. However, there are severe differences between the predictions from these equations, and the most conservative one among vertical bearing capacity predictions are conventionally adopted as a design value. Consequently, the current prediction method for vertical bearing capacity of composite pile prediction composite pile causes design reliability and economical feasibility to be low. This paper investigated mechanical behaviors of a new composite pile, with a cross-section composed of double steel pipes filled with concrete (DSCT), vertical bearing capacities were analyzed for several DSCT pile conditions. Axisymmetric finite element models for DSCT pile and surrounding ground were created and they were used to analyze effects on behaviors of DSCT pile pile by embedding depth, stiffness of plugging material at pile tip, height of plugging material at pile tip, and rockbed material. Additionally, results from conventional design prediction equations for vertical bearing capacity at steel hollow pile tip were compared with that from numerical results, and the use of the conventional equations for steel hollow pile was examined to apply to that for DSCT pile.

Experimental Study on the Connection between RC Footing and Steel Pile according to Rail loads (철도하중을 고려한 기초구조물과 강관말뚝 연결부 거동에 관한 실험적 연구)

  • Kim, Jung-Sung;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1607-1614
    • /
    • 2011
  • As the connection between spread footing and pile is very important structural connection, it acts as the inter-loading medium to transfer the rail loads applied by superstructure to ground through the body pile of foundation. The experimental study is the method how to reinforce the pile cap between steel pile and footing utilizing perfobond plate with protruding keys. It were experimented on the compression punching tests and bending moment tests against the vertical loading and horizontal loadings acting on head of steel tube pipe. As a result, the tension capacity of the perfobond plate exhibited the superior performance due to the interlocking or dowel effects by the sheared keys of perfobond plate, and there were showing the sufficient strength and ductile capacity against the bending moment of horizontal loading tests. Therefore, it is judged that "the embedded method of perfobond plate in pile cap and footing" which is utilizing the shear connection of perfobond plate with protruding keys has a sufficient structural stability enough to be replaced with the current specification of reinforced method of pile cap with vertically deformed rebar against the vertical compression loads and bending moments that are able to occur in the combination structure of steel pile and the footing foundation.

  • PDF

JV Rock Driving Method (JV 공법)

  • Kim, Kwang-Il;Inoue Hajimu;Toshio Teraoka;Yeo, Byung-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.41.1-44
    • /
    • 1995
  • The JV method is an epochal civil engineering style that boasts of significant pile driving power through low-vibration works by ideally combining the high pressure water injected from the water jet cutter and the vibrations combining from the vibratory pile driver extractors. As a result, you are ensured stable and safe pile driving and extraction in bedrocks that were previously impossible with conventional machines and methods. The other advantage is its high performance and a low-pollution characteristis that is ensured by suppressing ground vibrations. This is a very important factor since it often becomes an issue upon civil engineering in the city. With the addition of this method. the range of steel pipe pile, steel sheet pile and other steel pile use has been drastically expanded. Other advantages of this method incldes accurate works, shortening of the construction period and improved work performance. Since the minimun amount of high pressure water is used to drill the ground, it not only loosens the ground, but also cuts the ground at the tip of the pile to improve driving works.

  • PDF

Retrofitting of steel pile-abutment connections of integral bridges using CFRP

  • Mirrezaei, Seyed Saeed;Barghian, Majid;Ghaffarzadeh, Hossein;Farzam, Masood
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.209-226
    • /
    • 2016
  • Integral bridges are typically designed with flexible foundations that include one row of piles. The construction of integral bridges solves difficulties due to the maintenance of expansion joints and bearings during serviceability. It causes integral bridges to become more economic comparing with conventional bridges. Research has been focused not only to enhance the seismic performance of newly designed bridges, but also to develop retrofit strategies for existing ones. The local performance of the pile to abutment connection will have a major effect on the performance of the structure and the embedment length of pile inside the abutment has a key role to provide shear and flexural resistance of pile-abutment connections. In this paper, a simple method was developed to estimate the initial value of embedment length of the pile for retrofitting of specimens. Four specimens of pile-abutment connections were constructed with different embedment lengths of pile inside the abutment to evaluate their performances. The results of the experimentation in conjunction with numerical and analytical studies showed that retrofitting pile-abutment connections with CFRP wraps increased the strength of the connection up to 86%. Also, designed connections with the proposed method had sufficient resistance against lateral load.

Application of steel-concrete composite pile foundation system as energy storage medium

  • Agibayeva, Aidana;Lee, Deuckhang;Ju, Hyunjin;Zhang, Dichuan;Kim, Jong R.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.753-763
    • /
    • 2021
  • Feasibility studies of a reinforced concrete (RC) deep pile foundation system with the compressed air energy storage (CAES) technology were conducted in previous studies. However, those studies showed some technical limitations in its serviceability and durability performances. To overcome such drawbacks of the conventional RC energy pile system, various steel-concrete composite pile foundations are addressed in this study to be utilized as a dual functional system for an energy storage medium and load-resistant foundation. This study conducts finite element analyses to examine the applicability of various composite energy pile foundation systems considering the combined effects of structural loading, soil boundary forces, and internal air pressures induced by the thermos-dynamic cycle of compressed air. On this basis, it was clearly confirmed that the role of inner and outer tubes is essential in terms of reliable storage tank and better constructability of pile, respectively, and the steel tubes in the composite pile foundation can also ensure improved serviceability and durability performances compared to the conventional RC pile system.

Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests (현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구)

  • Choi, Yongkyu;Kim, Myunghak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.107-119
    • /
    • 2018
  • PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.

Analysis of Steel Reinforcement Ratio for Bent Pile Structures Considering Column-Pile Interaction (기둥-말뚝의 상호작용을 고려한 단일 현장타설말뚝의 철근비 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.181-188
    • /
    • 2014
  • In this study, an interactive analysis considering column-pile interaction is performed on the basis of an equivalent base spring model for supplementing virtual fixed point design of bent pile structures. Through this analytical method, the application of the minimum steel reinforcement ratio of the pile (0.4%) is analyzed by taking into account the major influencing parameters. Furthermore, the limit depth for steel reinforcement ratio is proposed through the relationships between column and pile conditions. To obtain the detailed information, it is found that an interactive analysis is intermediate in theoretical accuracy between the virtual fixed point model analysis and full-modeling analysis. Base on this study, it is also found that the maximum bending moment is located within cracking moment of the pile when material nonlinearity is considered. Therefore, the minimum steel reinforcement ratio is appropriately applicable for the optimal design of bent pile structures. Finally, the limit depth for steel reinforcement ratio ($L_{As=x%}$) is proposed by considering the field measured results. It is shown that the normalized limit depth ratio for steel reinforcement ratio ($L_{As=x%}/L_P$) decreases linearly as the length-diameter ratio of pile ($L_P/D_P$) increases, and then converges at a constant value.

A Study on Flexural Behavior of Composite PHC pile with CT Structural Steel (PHC파일과 CT형강을 합성한 합성형 벽체파일의 휨거동에 대한 연구)

  • Mha, Ho-Seong;Won, Jeong-Hun;Cho, Hyo-Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.233-243
    • /
    • 2012
  • This study verifies the structural capacity of the composite PHC pile (Pretensioned spun high-strength concrete) consisting of a PHC pile and two CT structural steels. Four full-scale specimens are fabricated and the experimental tests were performed to investigate the flexural behaviors of the composite PHC piles. The composite PHC pile can enhance both the structural capacity and functional convenience, since the web of CT structural steel with holes in the web acts as a shear connector (referred to as the perfobond rib), which can connect concrete and steel. All specimens exhibited flexural failure and the ultimate strengths were larger than the anticipated design strength according to the design standard. Thus, the composite PHC pile can be applicable to wall structures with sufficient strength. In addition, it seems that the web of the CT structural steel with holes performs its role as shear connectors.