• Title/Summary/Keyword: Steel pile

Search Result 378, Processing Time 0.024 seconds

Numerical Analysis on the Behavior of Clayey Foundation Reinforced with Steel Sheet Pile (강널말뚝으로 보강된 점토지반거동의 수치해석)

  • 양극영;이대재;정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.142-154
    • /
    • 2002
  • This study was performed to investigate constraint effects of deformation (heaving, lateral displacement) of clayey foundation reinforced with sheet pile at the tip of banking on soft ground, under intact state (natural) and the state of vertical drain respectively. The following results are obtained. 1. In view of reduction in heaving or lateral displacement, sheet pile is not supposed to be of use. 2. Sheet pile is effective only when vertical drain is installed for acceleration of consolidation and gradual loading is applied.

Local Resistance Factor Update of Driven Steel Pipe Piles Using Proof Pile Load Test Results (검증용 정재하시험을 이용한 타입강관말뚝의 저항계수 보정)

  • Park, Jae Hyun;Kim, Dongwook;Chung, Choong Ki;Kim, Sung Ryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.259-266
    • /
    • 2011
  • Conducting statistical analysis of foundation resistance using sufficient number of well-performed load test results is prerequisite for the calibration of reliable resistance factors for foundation LRFD. In this study, a rational analysis method is proposed so that the proof pile load test results can be reflected in update of resistance statistical characteristics based on Bayesian theory. Then, resistance factors for driven steel pipe piles compatible with Korea foundation practices are updated by implementing this rational analysis method. To accomplish the resistance factor updates, (1) prior pile resistance distribution is constructed based on the results of pile load tests, which loads are imposed at least up to their ultimate limit loads. (2) likelihood function is obtained from the results of proof pile load tests, and (3) posterior pile resistance distribution is updated by combining these prior pile resistance distribution and likelihood function. The resistance factors are updated using the posterior pile resistance following the first-order reliability method (FORM). From the possible results of five consecutive proof pile load tests, the updated resistance factors vary within ranges of 0.27-0.96 and 0.19-0.68 for target reliability indices of 2.33 and 3.0, respectively. Consequently, it was found that the Bayesian theory-implemented method enables the updates of resistance factors in an efficient way when reliable resistance factors are not available due to the lack of well-performed pile load test results.

Behavior of full-scale prestressed pile-deck connections for wharves under cyclic loading

  • Blandon, Carlos A.;Krier, Christopher J.;Restrepo, Jose I.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.455-468
    • /
    • 2019
  • The behavior of pile-deck connections of pile-supported marginal wharfs subjected to earthquake loading is of key importance to ensure a good performance of this type of structures. Two precast-pretensioned pile-deck connections used in the construction of pile-supported marginal wharfs were tested under cyclic loading. The first is a connection with simple reinforcement details and light steel ratio developed for use where moderate pile-deck rotation demands are expected in the wharf. The second is specifically developed to sustain the large rotation, shear force and bending moment demands, as required for the shortest piles in a marginal wharf. Data obtained from the test program is used in the paper to calibrate an equivalent plastic hinge length that can be incorporated into nonlinear analysis models of these structures when prestressed pile-deck connections with duct embedded dowels are used.

The Study on Local Composite Behavior of Connection Member between Steel Pipe Pile and Concrete Footing (강관 말뚝 기초 두부 연결부의 합성거동에 대한 연구)

  • You, Sung-Kun;Park, Jong-Myen;Park, Dae-Yong;Kim, Young-Ho;Kang, Won-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.288-296
    • /
    • 2003
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the related specification, type B-method is provident. To investigate real structural behavior of type B connection, several load tests are done with carefully designed experimental system. The purpose of this experiment is mainly focused on the understanding of actual behavior which can be predicted by design theory. At this research stage, vertical and lateral loading test are done for three types of specimen to review stress concentration, formation and behavior of imaginary RC column in the footing and effect of non-slip device installed in the steel pipe pile. The load resistance mechanism in these specific connection method is predicted based on both experimental results. The three-dimensional finite element modeling is also done for the purpose of comparison between numerical and experimental result. With all the results gained from experiment the structural behavior of imaginary RC column in the design concept is confirmed. The role of non-slip device is very important and it affects the resistance capacity with help of composite action of concrete and steel pipe pile.

Analysis of Pile Behaviors with Friction Resistance of Skin of Steel Pipe Pile in Ground where Settlement is Predicted (침하가 예측되는 지반에서 강관말뚝 주면 마찰 저항에 따른 말뚝의 거동 분석)

  • Lee, Kicheol;Shin, Sehee;Lee, Haklin;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.107-117
    • /
    • 2020
  • Open-ended steel pipe piles have outside frictional force and inside frictional resistance in which blocked soil acts on the inside of the steel pipe during installation. It is expected that the ultimate load will change depending on the inside and outside resistance. And, if the ground on which the piles were constructed is clay soil, it is predicted that it will have effect on the negative skin friction caused by the ground settlement. Therefore, in this study, the behavior according to the inside and outside resistance characteristics of steel pipe piles was analyzed numerically, and the frictional force distribution, axial load and settlements before and after the occurrence of ground settlement were calculated. As a result of the analysis, the inside frictional resistance had less influence than the outside frictional resistance. However, inside frictional resistance is considered to be one of the important factors considering the effect on the overall pile behavior, and both resistance factors need to be considered in the design process.

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.

A Study on Axially and Laterally Loaded Steel Sheet Pile Bridge Abutment (축하중 및 횡하중을 받는 강널말뚝 교대에 관한 연구)

  • Chung, Ha-Ik;Oh, In-Kyu;Yoo, Jun;Eun, Sung-Woon;Son, In-Goon;Lee, Sung-Yeol;Kim, Hyung-Koo;Lee, Young-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.427-430
    • /
    • 2003
  • Steel piling for abutments of new and replacement bridges can be aesthetically attractive and cost effective. Use of embedded steel sheet piling brings savings in dead load, provides a compliant retaining wall, and permits speedier construction. In addition, for replacement bridge projects, traffic interruption can be minimized. It is hoped that this study will encourage designers and constructors to consider a steel substructure option more frequently during the conceptual and preliminary design phases of projects and thereby to take advantage of the Potential to construction more efficiently.

  • PDF

End bearing Behavior of Open-ended Steel Pipe Piles Resting on Harden Cement Milk (시멘트밀크 고결체 위에 강관말뚝 선단 매입된 말뚝거동)

  • Park, Young-Ho;Kim, Sung-Hwan;Kim, Nag-Young;Kim, Hong-Jong;Park, Yong-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1140-1147
    • /
    • 2010
  • To find the soil plug of steel piles shaped by jet grouting, 4 blocks of cement milk with cube of 1.2m were made. 4 open-ended steel piles on the blocks were rested. The inner end part of 2 the piles was not reinforced. Cement milk 65%(SIG-1) and 100%(RJP-1) were filled into the block and height of 4.2 times of inner the pile diameter respectively. And the other the piles were welded 2 steel ring. The filling of the cement milk was an equal method as before(SIG-2 and RJP-2). Also the strain gauges were installed and the static pile load tests were done at the piles all. As a result, list in great order for effect of soil plug was (1)SIG-1, (2)SIG-2, (3)RJP-1, (4)RJP-2. This is because of strength and filling height of cement milk. And the higher the strength is, the greater the confining coefficient is.

  • PDF

The Push-out Resistance Evaluation of Steel Pipe Cap with Perfobond Rib Shear Connector (퍼포본드로 보강된 강관말뚝머리의 압발저항성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.77-80
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as disposition of reinforcing bars, insurance of anchoring length of reinforcements and requirement of shear key. This study suggests a new type of steel pipe pile cap system with perforated rib shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.

  • PDF

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.