• Title/Summary/Keyword: Steel box girder bridge

Search Result 229, Processing Time 0.025 seconds

Design and Construction of Hybrid Bridge with Corrugated Steel Web by Incremental Launching Method (압출공법에 의한 복부 파형강판 복합교량의 설계 및 시공)

  • Kim Kwang Soo;Jung Kwang Hoe;Sim Chung Wook;Han Jung Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.411-414
    • /
    • 2005
  • This paper presents how to design and construct the Il-sun bridge, the first PSC box girder bridge with Corrugated Steel Web(CSW) in Korea, including 3D analysis results according to construction steps. Also, the 3D analysis for the beams with CSW was performed for the purpose of verifying the role of the flange plate. As the results of this analysis, it is founded that the flange plate plays a role to resist the flexural strength in the nonlinear region. In the near future, we are plan to carry out the load test for these beams with CSW.

  • PDF

Local Buckling in Steel Box Girder Bridge with Lifting and Lowering Support Method (지점 상승 하강 공법에 의한 강상자형교의 국부좌굴)

  • Koo, Min Se;Jeong, Jae Woon;Na, Gwi Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 2003
  • The lifting and lowering supports method makes up for the weak points in the classical method and provides makes construction economical effect to construction. The application of pre-compression to continuous steel box girder bridges makes it possible to reduce the amount of steel, the height of girders and consequently, the cost consequentlyof the bridges' construction by through the process of concrete filling- up and the lifting-lowering of the inner supports. The lifting and lowering supports method is apt to cause local buckling in the lower flange and web plates by due to the process of the lifting of the inner supports. Therefore iln this study, therefore, the possibility of local buckling could be decreased, in consideration of the lifting force and the buckling strength of stiffened plates, by increasing the number of longitudinal stiffeners and the installation of extended longitudinal stiffeners on the lower flange and the web plates in the range of positive moment.

A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges (장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구)

  • 심종성;오홍섭;김민수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

Investigation on the effect of vibration frequency on vortex-induced vibrations by section model tests

  • Hua, X.G.;Chen, Z.Q.;Chen, W.;Niu, H.W.;Huang, Z.W.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.349-361
    • /
    • 2015
  • Higher-mode vertical vortex-induced vibrations (VIV) have been observed on several steel box-girder suspension bridges where different vertical modes are selectively excited in turn with wind velocity in accordance with the Strouhal law. Understanding the relationship of VIV amplitudes for different modes of vibration is very important for wind-resistant design of long-span box-girder suspension bridges. In this study, the basic rectangular cross-section with side ratio of B/D=6 is used to investigate the effect of different modes on VIV amplitudes by section model tests. The section model is flexibly mounted in wind tunnel with a variety of spring constants for simulating different modes of vibration and the non-dimensional vertical amplitudes are determined as a function of reduced velocity U/fD. Two 'lock-in' ranges are observed at the same onset reduced velocities of approximately 4.8 and 9.4 for all cases. The second 'lock-in' range, which is induced by the conventional vortex shedding, consistently gives larger responses than the first one and the Sc-normalized maximum non-dimensional responses are almost the same for different spring constants. The first 'lock-in' range where the vibration frequency is approximately two times the vortex shedding frequency is probably a result of super-harmonic resonance or the "frequency demultiplication". The main conclusion drawn from the section model study, central to the higher-mode VIV of suspension bridges, is that the VIV amplitude for different modes is the same provided that the Sc number for these modes is identical.

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.

Current Status and Analysis of PSC Bridge in Korea (국내 프리스트레스트 콘크리트 교량 현황조사 및 분석)

  • Son, Hyeok-Soo;Oh, Myung-Seok;Yoon, Cheol-Kyun;Kim, Ik-Su;Kim, Jin-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.23-24
    • /
    • 2010
  • In this research, the comparison and analysis of domestic prestressed concrete bridges were performed with major variations of superstructure type, and span lengths using the 'current status of roadbridge and tunnel' informations provided by MLTM and STATISTICS KOREA. As a result of analysis, steel box girder bridges with 50~100m span length represent about 76% of bridges, but prestressed concrete bridges represent a relatively smaller percentage. In order to replace steel box girder bridges with prestressed concrete bridges, it is necessary to develop prestressed concrete bridges with high-strength tendons and concrete.

  • PDF

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

The Study for Establishing the Criteria of Measurement Items in the Monitoring System for the Steel-Box Girder Bridge by FEM Analysis (구조해석에 의한 강상자형교 상시계측시스템 계측항목별 관리기준치 설정 연구)

  • Joo, Bong-Chul;Park, Ki-Tae;You, Young-Jun;Lee, Chin-Hyung;Hwang, Yoon-Koog
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.4
    • /
    • pp.35-41
    • /
    • 2009
  • If any bridge has the monitoring system, the bridge manager can check the history of bridge behavior and the progress of the damage more exactly. When the unexpected event (ex: earthquake and flood) happens, the manager can check the safety condition of the bridge and make the pertinent action for bridge management which is reduction of vehicle speed or traffic control through the system. Additionary the manager can make the well-timed repair or reinforcement through the system, so he can save the management cost or the life cycle cost. This study presents the method of setting the criteria by FEM analysis in bridge monitoring system, and the standard progress for setting the criteria about measurement items of monitoring system for the steel box type bridge.

  • PDF

Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (복합트러스교의 격점구조별 비틀림 거동)

  • Jung, Kwang-Hoe;Lee, Sang-Hyu;Yi, Jong-Won;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • HTB (hybrid truss bridge) steel truss webs instead of concrete webs in prestressed box girder bridges has been widely used in, because of its structural benefit such as relatively less self-weight and good aesthetics due to open web structure. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The researches were performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showned that HTB applied to a curved bridge or a eccentric loading bridge, characteristic has a weak torsional capacity compared to an ordinary PSC box girder bridges due to the open structure of HTB. In this study, three box shaped hybrid truss specimens were made and the torsional test and evaluation for them were performed in order to find out the torsional behavior of HTB according to the connection system.