• Title/Summary/Keyword: Steel Slag

Search Result 438, Processing Time 0.024 seconds

Experimental Study of Manufacturing Artificial Lightweight Aggregates using Industrial Wastes (산업폐기물을 이용한 인공 경량골재 제조에 관한 실험적 연구)

  • Yoon, Seob;Kim, Jung-Bin;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.247-248
    • /
    • 2010
  • This study is of manufacturing artificial lightweight aggregates using industrial wastes. The ingredients for manufacturing lightweight aggregate were stone sludge and bottom ash for main materials, and steel slag(SS), glass abrasive sludge(GS) and blast furnace slag(BS) respectively for accessory material. Their precursors were sintered in the range of $1,050{\sim}1,150^{\circ}C$ for 5 min. The sintered results show that the lightweight aggregate with SS had low water absorption ratio and density at $1,150^{\circ}C$. There's a possibility that if GS is used more than the range of this study, GS can be manufactured lightweight aggregate. But it is judged that BS are incongruent to be used for a raw material of lightweight aggregate.

  • PDF

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF

Analysis of Mechanical Properties of Solidified soil using Pig Iron Slag (용선슬래그를 활용한 고화토의 역학적 특성 분석)

  • Yang, Chul-Jin;Bae, Jun-Seok;Byun, Ho-Seok;Lee, Kang-Hwi;Lee, Jong-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • We conducted research to develop a solidification agent for the ground surface reinforcement method in which activator is fused by recycling pig iron slag, which is a byproduct generated in the steel making process. The purpose of this research is to solve the problems of surface soil by improving the strength and durability of foundation soil such as soil loss, settlement, sinkhole, etc. by recycling pig iron slag from disused or landfilled steelworks. For this purpose, the possibility of using pig iron slag as a solidification soil was evaluated by the compressive strength, elution test of harmful materials, permeability coefficient test. As a result of the compressive strength test, the values of the strength of the curing 28 days of the solidified soil having the solidification agent mixing ratio of 12% were found to be 0.93, 0.96 and 1.3 MPa, respectively, satisfying the required strength value of 1 MPa, In the case of permeability coefficients, the minimum values were $4.1{\times}10^{-8}$, $7.0{\times}10^{-7}$, and $1.7{\times}10^{-7}cm/sec$, respectively, at the solidification agent mixing rate of 12%. In addition, as a result of the elution test of harmful materials, a small amount was detected in the item of hexavalent chromium but satisfied the inclusion criteria, and in the remaining items, heavy metals were not eluted.

Studies on Carbonation of Concrete with Low-Calcium Fly Ash and Blast Furnace Slag (플라이 애쉬 및 고로수쇄(高爐水碎)슬래그를 혼화(混和)한 콘크리트의 중성화(中性化)에 관한 연구(研究))

  • Nagataki, Shigeyoshi;Kim, Eun Kyum;Ohga, Hiroyuki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.229-240
    • /
    • 1987
  • Carbonation of concrete is one type of a chemical process. The reaction mechanism is very complex for the case when low-calcium fly ash and blast furnace slag is added. When fly ash and blast furnace slag is used as an admixture in concrete, they improve compressive strength in the long term, permeability and chemical resistance of concrete by a pozzolanic reaction and latent hydraulic property. On the other hand, the pozzolanic reaction of fly ash and latent hydraulic property of the blast furance slag leads to a reduction of the alkalinity of the concrete. It has been pointed out that this will accelerate the carbonation of the concrete and the corrosion of reinforcement steel embedded in the concrete. In order to clarify the effect of fly ash and blast furance slag on the carbonation of concrete, an accelerated carbonation testing of concrete was carried out by varying the conditions of concrete and the initial curing period in water. The test results of accelerated carbonation were compared to the carbonation test results of concrete stored for 15 years in open air, but protected from rain. As a result, the equation for the rate of carbonation based on compressive strength of concrete was proposed.

  • PDF

Synthesis of Na-A type Zeolite From Melting Slag (소각재 용융슬래그를 이용한 제올라이트 Na-A의 합성)

  • Jang Young-Nam;Chae Soo-Chuu;Bae In-Kook;Ryou Kyung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2005
  • Na-A zeolite were synthesized from melting slag of the incinerated ash by the alkaline activation processes. The experiments were performed in stainless steel vessels, with continuous stirring during the reaction periods. The silica-rich solution, a starting material, which was the waste of crystal growth factory, contains 5.7 wt% SiO₂ and 3.2 wt% Na₂O. And NaAlO₂ was made by the reaction of aluminium dross and NaOH solution and its molar ratios were Na₂O/Al₂O₃= 1.2 and H₂O/Na₂O=9. During the residence time of 7∼8 h at 80℃, the mixing of the silica-rich solution, NaAlO₂ and melting slag yields the production of homogeneous Na-A zeolite. The optimal reactant composition in molar ratio of Na₂O:Al₂O₃:SiO₂ was 1.3∼l.4 : 0.8∼0.9 : 2 and mixing ratio of solution and slag was 1/7∼10 (g/cc). Synthesized Na-A zeolite has cubic form uniformly and its size ranges about 1 ㎛. Ca/sup 2+/ ion exchange capacity of the Na-A was about 180∼210 meq/100g, corresponding approximately 80% to the commercial detergent builder.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

A Study on Strength Properties of Soil Cement Specimen using Processed Recycle Resources as Cement Admixtures (가공된 순환자원을 시멘트 혼화재로 활용한 흙 시멘트 공시체의 강도 특성에 관한 연구)

  • Choi, Woo-Seok;Ha, Eun-Ryong;Kim, Eun-Sup;Jung, Seung-Hwan
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.312-323
    • /
    • 2017
  • In this study, an influence of mixing ratio among firing oyster shell, non-firing oyster shell, magnetic separated converter steel slag and fly ash used as admixtures on strength properties of soil cement was evaluated by correlation analysis among compressive strength, deformation modulus and mixing ratio of admixtures. As a result, the strength of the specimens containing non-firing oyster shells was found to be larger than that of firing oyster shells, and it was confirmed that firing oyster shells could negatively affect the strength of soil cement specimens unlike previous studies. In addtion, there was a positive correlation between the ratio of magnetic separated converter slag and strength properties, so it is confirmed that it can be used as an admixture.

Applicability Evaluation and Development of High Strength Spacer with Plastic Fiber and Slag Cement (플라스틱 섬유재와 슬래그 시멘트를 이용한 고강도 간격재의 개발 및 적용성 평가)

  • Kwon, Seung-Jun;Jo, Hong-Jun;Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2014
  • Spacer is a construction material for maintaining cover depth and steel installation, however several problems like staining, leakage, and cracking are currently issued due to performance degradation and unsatisfactory dimensional stability of spacer. Plastic composite is widely used for prevention of brittle failure in cement based material, which yields improvement of crack resistance and ductile failure. This study is for development and applicability evaluation of high strength spacer with slag cement for environmental load reduction and plastic composite like polypropylene fiber, nylon fiber, and glass fiber. For this work, unit weight of 4 different plastic fibers are evaluated through preliminary tests. Physical tests including compressive, flexural, and tensile strength and durability tests including absorption, permeability, length change, crack resistance, carbonation, and freezing and thawing are performed. Through various tests, optimum plastic fiber is selected and manufacturing system for high strength spacer with the selected fiber is developed. Dimensional stability of the developed spacer is evaluated through field applicability evaluation.

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.

Study on the Corrosion Characteristics in the Slag Line of SEN Oxide Refractory (산화물계 SEN내화물의 슬래그 라인부 침식특성 연구)

  • Sung, Young Taek;Son, Jeong Hun;Lee, Sung Seok;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • The corrosion resistance of submerged entry nozzle (SEN) materials were investigated for high-class steel manufacturing. Composite samples were fabricated by mixing $ZrO_2$, $Al_2O_3$, MgO, mullite, spinel, and carbon. The raw materials were mixed with attrition milling, compacted in a uniaxial pressure of 200MPa and calcined at $1000^{\circ}C$ for 3 h in $N_2$ atmosphere. The bulk density and apparent porosity of the calcined samples were measured by the liquid displacement method in water using Archimedes's principle. The corrosion resistance of the samples were measured by cup test with mold powder at $1550^{\circ}C$ for 2 h. The microstructure and elemental analysis of samples were observed by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and X-ray diffraction pattern (XRD). The XRD result shows that the starting raw materials were crystalline phase. The microstructure of fabricated specimen was investigated before and after corrosion tests at $1000^{\circ}C$ and $1550^{\circ}C$ for 2h. $ZrO_2$-C composite showed good resistance in the slag corrosion test. Among the composite oxide materials, $ZrO_2-Al_2O_3$-C and $ZrO_2$-MgO-C showed better resistance than $ZrO_2$-C in the slag corrosion test. The diameter variation index of $ZrO_2$-C refractory was 16.1 at $1000^{\circ}C$ for 2 h. The diameter variation index of the $ZrO_2-Al_2O_3$-C refractory was larger than that of the $ZrO_2$-C refractory at $1550^{\circ}C$ for 2 h.