• Title/Summary/Keyword: Steel Company

Search Result 365, Processing Time 0.023 seconds

High Productive Welding Technologies for Large Container Ship (대형 컨테이너선 건조를 위한 고능률 용접기술)

  • Goo, Yeon-Baeg;Sung, Hee-Joon;Choi, Kee-Young;Kim, Kyeong-Ju
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.80-86
    • /
    • 2009
  • In order to improve productivity of large container ship construction, large heat input and/or high productive welding technologies are necessary. This can be achieved by the joint research and cooperation among steel maker, welding consumable company, welding equipment company and ship yards. Two electrodes SAW process is effective the plate butt welding and partial joint welding, while FGB welding process is for the connection of block to block joint. The higher strength and thicker steel is developed, the more reliable welding procedure such as two electrodes EGW including light weight welding equipment should be developed.

  • PDF

3D Unsteady Numerical Analysis of a Slab Heater for Steel Mill Company (제철소용 가열로 내전열과 유동장의 3차원 비정상 해석)

  • Han, Sang-Heon;Kang, Sang-Hun;Kim, Chang-Young;Kim, Man-Young;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.67-74
    • /
    • 2004
  • Numerical analysis code has been developed for investigating the combustion characteristics in a slab heater of a steel mill company. Unsteady full 3-Dimensional behaviour can be predicted with the code. Premixed flame model is adopted for combustion phenomena. And eddy dissipation model is used for turbulent flow and non gray FVM method for radiation. Slab movement can be fully traced from entrance into heater until it's exit and computation is performed during that period. Code was validated by comparing the calculation results with experimental ones for the bench scale heater.

  • PDF

Recycling Technology of Waste Product in Electro Galvanizing Line of Steel Company

  • Lee, Jae-Young;Lee, H. H.;Kim, D. Y.;J. G. Sohn
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This technology Provides an economical Production of high value added goods applicable to electro chemicals by recycling of waste products in EGL(Electro Galvanizing Line). The waste products produced in EGL contain potassium chloride (KCI), nickel and zinc. Highly pure KCI and Zinc Chloride which are raw material of electro plating, can be produced by the development of the recycling process. The scope of this study ranges from laboratory experiments to pilot test in plant. We have developed the whole process of recycling technology such as purification method of waste products, fabrication methods of electro chemicals, basic design of plant, pilot scale production and evaluation of pilot goods, Developed electro chemicals were pure enough to satisfy the specification of steel company.

  • PDF

3D Unsteady Numerical Analysis of Slab Heating Characteristics in a Reheating Furnace for Steel Mill Company (제철소용 가열로 내 슬랩 가열 특성의 3차원 비정상 해석)

  • Han, Sang-Heon;Kim, Dong-Min;Baek, Seung-Wook;Kim, Chang-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • Numerical analysis code has been developed to investigate the slab heating characteristics in a reheating furnace of a steel mill company. Unsteady 3-Dimensional behaviour can be predicted with the developed code. Premixed flame model is adopted for combustion phenomena and eddy dissipation model is used for turbulent combustion. Non -gray FVM radiation method is used to get a better accurate radiative solution. Slab movement can be fully traced from entrance into a reheating furnace until it#s exit and computation is performed during that period.

  • PDF

STUD Welding on High Hardness Armor Steel of KWV (차륜형장갑차 고경도장갑강에 대한 스터드 용접의 적용)

  • Cho, Hwan-Hwi;Shin, Yong-cheol;Yi, Hui-jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.567-573
    • /
    • 2016
  • GMAW and GTAW processes have been used for welding of equipment mounting pads during decades. For improving the mobility and survivability of KWV(Korean Wheeled Vehicle), various types of equipment are required and numbers of pads for welding were increased. In this research, for improving productivity of mounting pads welding process, new technology of stud welding was studied. In this study, mechanical properties of stud weldment were investigated to compare with those of GMAW weldment. Also, research of stud weldment durability was carried out and proved its fatigue strength under the condition of KWV's 32,000 km load profile.

Height-thickness ratio on axial behavior of composite wall with truss connector

  • Qin, Ying;Shu, Gan-Ping;Zhou, Xiong-Liang;Han, Jian-Hong;He, Yun-Fei
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.315-325
    • /
    • 2019
  • Double skin composite walls offer structural and economic merits over conventional reinforced concrete counterparts in terms of higher capacity, greater stiffness, and better ductility. This paper investigated the axial behavior of double skin composite walls with steel truss connectors. Full-scaled tests were conducted on three specimens with different height-to-thickness ratios. Test results were evaluated in terms of failure mode, load-axial displacement response, buckling loading, axial stiffness, ductility, strength index, load-lateral deflection, and strain distribution. The test data were compared with AISC 360 and Eurocode 4 and it was found that both codes provided conservative predictions on the safe side.

Behavior Analysis of Earth Retaining Wall with S.G.P method (강판을 사용한 흙막이 벽체공법(SGP) 거동분석)

  • Cho, Seong-Ha;Choi, Gwan-Woo;You, Kwong-Ho;Kim, Sung-Duk;Kim, Young-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1269-1277
    • /
    • 2008
  • In this study, the behavior of retaining wall composed with soldier pile and steel plate is analysed. The steel guided plate(SGP) method is applied to the site near the riverside in which geotechnical condition results in flood and large deformation. Following the concept of preventing infiltration from huge permeability stratum and decreasing deformation with strengthened stiffness simultaneously, this method is discussed its effectiveness with the instrumentation data. Also the differences of behavior between predicted and detected are investigated with numerical methods. It is found that SGP has a good deal of advantages with regard to balancing between control of permeability and deformation. In addition, it is revealed that SGP can give resonable construction plan for sustaining stiffness for which the sheetpiling method cannot be adopted effectively in waterfront condition.

  • PDF

Improvement of cold mill precalculation accuracy using a corrective neural network

  • Jang, Min;Cho, Sungzoon;Cho, Yong-Joong;Yoon, Sungcheol;Cho, Hyungsuk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.63-66
    • /
    • 1996
  • Cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thichness. At Pohang Iron and Steel Company (POSCO) in Pohang, Korea, precalculation determines the mill settings before a strip actually enters the mill and is done by an outdated mathematical model. A corrective neural network model is proposed to improve the accuracy of the roll force prediction. Additional variables to be fed to the network include the chemical composition of the coil, its coiling temperature and the aggregated amount of processed strips of each roll. The network was trained using a standard backpropagation with 2,277 process data collected form POSCO from March 1995, then was tested on the unseen 200 data from the same period. The combined model reduced the prediction error by 55.4% on average.

  • PDF

Effect of Carbon Equivalent and Cooling Rate on Microstructure in A516 Steels for Pressure Vessel (압력용기용 A516 강의 미세조직에 미치는 탄소 당량과 냉각 속도의 영향)

  • Lee, Hyun Wook;Kang, Ui Gu;Kim, Min Soo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.511-518
    • /
    • 2019
  • In this study, the effect of carbon equivalent and cooling rate on microstructure and hardness of A516 steels for pressure vessel is investigated. Six kinds of specimens are fabricated by varying carbon equivalent and cooling rate, and their microstructures and hardness levels are analyzed. Specimens with low carbon equivalent consist of ferrite and pearlite. As the cooling rate increases, the size of pearlite decreases slightly. The specimens with high carbon equivalent and rapid cooling rates of 10 and $20^{\circ}C/s$ consist of not only ferrite and pearlite but also bainite structure, such as granular bainite, acicular ferrite, and bainite ferrite. As the cooling rate increases, the volume fractions of bainite structure increase and the effective grain size decreases. The effective grain sizes of granular bainite, acicular ferrite, and bainitic ferrite are ~20, ~5, and ${\sim}10{{\mu}m$, respectively. In the specimens with bainite structure, the volume fractions of acicular ferrite and bainitic ferrite, with small effective grains, increase as cooling rate increases, and so the hardness increases significantly.

Effect of Tempering on Stretch-Flangeability of 980 MPa Grade Dual-Phase Steel (980 MPa급 이상조직강의 신장 플랜지성에 미치는 템퍼링의 영향)

  • Lee, Gun-Hee;Baek, Jong-Hee;Song, Eunji;Na, Seon-Hyeong;Park, Bongjune;Kim, Ju-Young;Kwon, Yongjai;Shin, Sang Yong;Lee, Jung Gu
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.292-300
    • /
    • 2020
  • In this study, the effect of tempering on the stretch-flangeability is investigated in 980 MPa grade dual-phase steel consisting of ferrite and martensite phases. During tempering at 300 ℃, the strength of ferrite increases due to the pinning of dislocations by carbon atoms released from martensite, while martensite is softened as a consequence of a reduction in its carbon super-saturation. This strength variation results in a considerable increase in yield strength of the steel, without loss of tensile strength. The hole expansion test shows that steel tempered for 20 min (T20 steel) exhibits a higher hole expansion ratio than that of steel without tempering (T0 steel). In T0 steel, severe plastic localization in ferrite causes easy pore formation at the ferrite-martensite interface and subsequent brittle crack propagation through the highly deformed ferrite area during hole expansion testing; this propagation is mainly attributed to the large difference in hardness between ferrite and martensite. When the difference in hardness is not so large (T20 steel), on the other hand, tempered martensite can be considerably deformed together with ferrite, thereby delaying pore formation and hindering crack propagation by crack blunting. Eventually, these different deformation and fracture behaviors contribute to the superior stretch-flangeability of T20 steel.