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Abstract

Cold rolling mill process in steel works uses stands
of rolls to flatten a strip to a desired thickness.
At Pohang Iron and Steel Company (POSCO)
in Pohang, Korea, precalculation determines the
mill settings before a strip actually enters the mill
and is done by an outdated mathematical model.
A corrective neural network model is proposed to
improve the accuracy of the roll force prediction.
Additional variables to be fed to the network in-
clude the chemical composition of the coil, its
coiling temperature and the aggregated amount
of processed strips of each roll. The network was
trained using a standard backpropagation with
2,277 process data collected from POSCO from
March 1995 through December 1995, then was
tested on the unseen 200 data from the same pe-
riod. The combined model reduced the prediction
error by 55.4% on average.

1 Introduction

Cold rolling mill process in steel works uses
stands of rolls to flatten a steel strip to a desired
thickness. As passing through the stands of rolls,
source strip coils are pressed. At this time, roll
gap and rolling force which are the most impor-
tant variables in the process are determined by a
mathematical model in precalculation [4, 1, 5].

Cold mill process control(Figure 1) at Pohang
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Figure 1: Cold mill process at POSCO

Iron and Steel Company(POSCO) is divided into
three phases, precalculation, real time control and
postcalculation. Precalculation determines initial
settings of the mill before a source strip coil is
up-loaded into the mill. Real time control con-
sists of four different kinds of control systems (see
Figure 1) which, based on the preset values de-
termined by precalculation, continuously update
the control commands. In particular, automatic
gauge control system issues commands in order to
meet the desired thickness of the strip. Thus, er-
rors made in precalculation can be compensated
if it’s within a certain range. However, large er-
rors can not be handled by the real time control



system. Postcalculation adjusts certain param-
eter values used in the mathematical model for
precalculation of future strips [5].

The goal of precalculation is a precise control
of roll gap. This depends on the rolling force pre-
dicted by the mathematical model. The difficulty
of rolling force calculation stems from not know-
ing the exact values of variables in the mathe-
matical model, such as friction coeflicients and
deformation resistance of the coil. Because the
exact values of variables cannot be measured dur-
ing processing of the coil, it is impossible to math-
ematically calculate the rolling force in the cold
mill process. We can only “predict” the rolling
force by approximating from the historical infor-
mation. The information consists in a number
of tables specified according to the steel class
of a coil. By referring the tables, mathemati-
cal model gets values of variables and coefficients.
But values in the tables are very discrete and even
sparse at some ranges, thus the predicted rolling
force cannot but be poorly approximated. An-
other problem in the mathematical model is the
fact that it is missing some important variables
in rolling force precalculation, such as the coiling
temperature at hot mill, the chemical composi-
tions of the coil, the aggregated amount of pro-
cessed strip at each stand and the roll type. These
factors are well known to influence the rolling
force prediction, but it is not clear how these fac-
tors could be incorporated in the present mathe-
matical model [6].

What we propose here is to use a corrective
neural network alongside with the mathematical
model. Since there are a plenty of cold mill data
available, the network can be trained to adjust
the rolling force values calculated by the mathe-
matical model.

The combined math/NN model is described in
the next section, followed by simulation results
based on the real data from POSCO cold mill
plant. Then we conclude with a summary and
future work.

2 Combined Model using a
Corrective Neural Net-
work

Figure 2 shows a combination of mathematical
model and a corrective neural network, originally
proposed in [6]. The mathematical model on the
left side calculates its prediction of rolling force
P,, based on input variables X as before. The
neural network on the right side is a multilayer
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X={roll diameter(D;), forward tension(7T}),
backward tension(73), initial thickness(H), tar-
get thickness(h), coil width(W) }
X'={aggegrated amount of coil processed, roll
type }

(Q={chemical composition (C, Mn, Si) }
S={average coiling temperature at hot rolling
mill }

Figure 2: Combined model of math/NN

perceptron which is trained on the (X, X/, Q. 5)
and Zp pairs. The corrective coefficient(Zp) from
the neural network is multiplied to the rolling
force P.g calculated by the mathematical model,
to produce the combined rolling force P.omp-

The input variables to the neural network have
four parts. First, X contains the same inputs
to the mathematical model. Second, X’ consists
of two stand-oriented variables, the aggregated
amount of processed coil in length and the roll
type. Third, Q represents the composition of C,
Mn and Si in the coil. The chemical compositions
are known to have to do with the deformation
resistance. Lastly, S is the average coiling tem-
perature from hot rolling mill, known to play an
important role in determining deformation resis-
tance.

Figure 3 shows the corrective neural network
with 12 input units and one output one. The
output of the neural network is the corrective
coefficient Zp, the ratio of the actual measured
rolling force (Pgc¢) to the predicted rolling force
(P.q1) by the mathematical model. This correc-
tive coefficient is multiplied to the rolling force
calculated by the mathematical model to result
in the combined rolling force (Peoms). A correc-
tive neural network is built for each of the five
milling stands.
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Figure 3: Corrective neural network

3 Simulation Results

A total of 2477 coil data with the yielding point
ranging from 30 to 33 were collected at POSCO
from March 1995 through December 1995. Each

input variable was normalized as

. _z —avg(z)
norm — de(x) k) (1)

where avg(z) and sdv(z) denote the average and
standard deviation of variable z, respectively.

A multilayer perceptron with two hidden layers
of ten hidden nodes each was trained with 90%
of the coil data using a standard backpropagation
algorithm. Each network took less than 2 hours
for learning on a SPARC 20 workstation.

To evaluate the performance of the combined
model, the unseen 10% of the coil data was used
for testing. The prediction error (E) was defined
as the difference in ton between the actual (Poe:)
and calculated (P.q;) or combined (Peoms) rolling
forces. Formally, they are defined as

Emath = ‘Pact - Pcal[ (2)
Ecomp = ]Pact - Pcomb|y

where Enqn and E.omp are prediction errors of
mathematical model and combined model, re-
spectively.

Table 1 shows the average prediction error of
the two models. The combined model using the
corrective neural network reduced the error 55.4%
on average and up to 72% in stand No. 2. Also,
average maximum and standard deviation of pre-
diction error were reduced from 236.4 to 163.3
and from 52.2 to 29.4, respectively.

Figure 4 shows how well the two models can
predict the rolling force at stand No. 5. If the
predicted rolling force (Peqi or Peoms) 1s same to

Stand | average | average | average error
number | Eah E.oms | reduction(%)
(ton) (ton)
1 118.82 | 41.48 65.1
2 98.09 2717 72.3
3 116.83 36.85 68.5
4 35.64 30.37 14.8
5 41.08 17.97 56.2
Average | 82.09 30.77 55.4
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Table 1: Comparison of the rolling force predic-
tion error both the mathematical and combined
model.
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Figure 4: Comparison of the combined with
mathematical models at stand No. 5. Dots
shaped as + and ¢ are the rolling force predic-
tions of the combined model and mathematical
model, respectively.

the actual rolling force(P,c:), the model’s predic-
tion is perfect and the dot will be placed on the
line (y = ). The less perfect the model is, the
farther the dot is placed from the line. The fig-
ure clearly shows that the combined model’s pre-
dictions are placed more closely to the line than
those of the mathematical model.

4 Conclusions

We propose a math/Neural Network combined
model for rolling force prediction in cold rolling
mill process. Addition of a corrective neural net-
work Is especially advantageous in that it enables
the model to take into account those variables
which are known to be influential, but whose
mechanism not explicitly understood. In partic-
ular, we have incorporated such additional fac-
tors as the chemical composition of the coil, its
hot coiling temperature, the aggregated amount



of processed strips for each roll and the roll type.
On average, the new proposed model reduced the
prediction error by 55.4%.

Here, we only reported results from experi-
ments with one class of coil. But there are a to-
tal of 11 classes of coils determined by the yield-
ing point. As additional data for other classes
are being gathered from an on-line computer, the
combined models for other classes of coils will be
implemented. Also, various preprocessing tech-
niques are being investigated to reduce the net-
work input dimension.
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