• Title/Summary/Keyword: Steel Bar

Search Result 914, Processing Time 0.03 seconds

Cost minimization of prestressed steel trusses considering shape and size variables

  • Aydin, Zekeriya;Cakir, Ebru
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.43-58
    • /
    • 2015
  • There are many studies on the optimization of steel trusses in literature; and, a large number of them include a shape optimization. However, only a few of these studies are focused on the prestressed steel trusses. Therefore, this paper aims to determine the amounts of the material and cost savings in steel plane trusses in the case of prestressing. A parallel-chord simply supported steel truss is handled as an example to evaluate the used approach. It is considered that prestressing tendon is settled under the bottom bar, between two end supports, using deviators. Cross-sections of the truss members and height of the truss are taken as the design variables. The prestress losses are calculated in two steps as instantaneous losses and time-dependent losses. Tension increment in prestressing tendon due to the external loads is also considered. A computer program based on genetic algorithm is developed to solve the optimization problem. The handled truss is optimized for different span lengths and different tendon eccentricities using the coded program. The effects of span length and eccentricity of tendon on prestressed truss optimization are investigated. The results of different solutions are compared with each other and those of the non-prestressed solution. It is concluded that the amounts of the material and the cost of a steel plane truss can be reduced up to 19.9% and 14.6%, respectively, by applying prestressing.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Finite Element Analysis on Hydration Heat of Concrete under the Influence of Reinforcing Steel Bars

  • Yoon, Dong-Yong;Song, Hyung-Soo;Min, Chang-Shik
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.33-39
    • /
    • 2007
  • The magnitude and distribution of hydration heat of concrete structures are related to the thermal properties of each component of the concrete, the initial temperature, the type of formwork, and the ambient temperature of exposed surfaces. Even though the reinforcing steel bar has completely different thermal properties, it has been excluded in the thermal analysis of the concrete structures for uncertain reasons. In this study, finite element analysis was performed on the concrete structures reinforced with steel bars in order to investigate the effect of reinforcing steel bars on the temperature and stress distribution due to the heat of hydration. As the steel content increased, the maximum temperature and the difference in the internal-external temperature decreased by 32.5% and 10.0%, respectively. It is clearly shown that the consideration of the influence of reinforcing steel bars in the heat of hydration analysis is necessary to obtain realistic solutions for the prediction of the maximum temperature and stresses of concrete structures.

Tension-Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Yazhi;Zhu, Dongping;Lu, Lu
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1784-1800
    • /
    • 2018
  • Tension-shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension-shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension-shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension-shear fracture models were calibrated based on the hybrid experimental-numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension-shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.

Pull-out Resistance Characteristics of the Anchor Bar According to the Grouting Material (주입재료에 따른 Anchor Bar의 인발저항 특성)

  • Yea, Geu-Guwen;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • In this study, the pull out resistance characteristics of an anchor bar to support a spillway installed in a slope are investigated by field tests. The injection materials were a cement mortar and cement milk. Unconfined compression strengths of those materials under several conditions were measured. As the result of compression test, the unconfined compression strengths of the cement mortar and the cement milk have positive proportional relation-ship with the water-cement ratio. They also have negative proportional relationship with increasing the curing time. In the same condition of water-cement ratio and curing time, the unconfined compression strength of cement milk is larger than that of cement mortar. In order to reduce the eccentricity in anchor bar during pull-out test in the field, the installation apparatus was improved by inserting a nut type of steel fixing coupling into the anchor bar. As the result of the pull-out test, the strength modification of cement milk was increased steeply at the early curing time. However, that of cement mortar was increased gradually with passing the curing time. Therefore, the cement milk has to use as the injection material for a prompt construction of anchor bar because the strength modification of cement milk is occurred at the early curing time.

An Experimental Study on the Bond of Steel Fiber Reinforced High-Strength Lightweight Concrete (강섬유보강 고강도 경량콘크리트의 부착에 관한 실험적 연구)

  • 민준수;김상우;이시학;김용부
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.613-616
    • /
    • 1999
  • The bond between reinforcing bar and concrete is a significant factor to confirm that they behave uniformly in the reinforced concrete. Thus, the studies on this field have been conducted by many researchers. But for the high strength lightweight concrete few studies have been done. In this study, the steel fiber reinforced high strength lightweight concrete developed to complement the brittleness of the high strength lightweight concrete was studied experimentally to find the local bond stress. Total 20 specimens were tested and the measured test values were compared with those calculated according to ACI 318-95 code and CEB-FIP code, respectively. The results indicate that the maximum bond stress has been influenced by increment of volume fracture of steel fiber, compressive strength and cover, Especially steel fiber caused not only increment of bond strength but also ductile behaviro.

  • PDF

A Study on the Evaluation of the Corrosive Environment of Reinforcement Bar by Concrete Layer Resistivity (콘크리트 층간비저항에 의한 철근의 부식환경 평가에 관한 연구)

  • Lim, Young-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.43-44
    • /
    • 2012
  • Deterioration factors such as CO2 and chloride ions cause steel corrosion in RC structures. The diffusion of these factors depends on the water content in concrete. To examine the moisture condition of concrete, this research considers the availability of the steel effect ratio, which is calculated by Resistivity Estimation Model (REM). It is concluded that the steel effect ratio is expected to be available as a quantitative evaluation method in the assessment of concrete layer resistivity.

  • PDF

Characteristics of corrosion fatigue strength of TiN coating steel (TiN 피복강재의 부식피로강도특성)

  • 김귀식;현경수;오맹종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.62-69
    • /
    • 1995
  • In order to investigate the effect of TiN coating on corrosion fatigue behavior of metal, the rotary bending corrosion fatigue tests were carried out in 3% NaCl solution by using the round bar specimens of high-speed steel, SKH-9, coated with TiN by PVD method. From the experimental results, fatigue strength of TiN coating steel in air was obvious improvement as compared with that of the substrate because of the restriction of dislocation movement in near surface of the substrate by hard thin film. In 3% NaCl solution, corrosion fatigue life of TiN coating specimen in high stress level was improvement same as in air. But in low stress level, corrosion fatigue life of TiN coating one was equivalent to that without coating, due to much crack initiated from corrosion pits formed at the substrate by failure of coating layer.

  • PDF

Modelling seismically repaired and retrofitted reinforced concrete shear walls

  • Cortes-Puentes, W. Leonardo;Palermo, Dan
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.541-561
    • /
    • 2011
  • The Finite Element Method (FEM) was employed to demonstrate that accurate simulations of seismically repaired and retrofitted reinforced concrete shear walls can be achieved provided a good analysis program with comprehensive models for material and structural behaviour is used. Furthermore, the analysis tool should have the capability to retain residual damage experienced by the original structure and carry it forward in the repaired and retrofitted structure. The focus herein is to provide quick, simple, but reliable modelling procedures for repair and retrofitting strategies such as concrete replacement, addition of diagonal reinforcing bars, bolting of external steel plates, and bonding of external steel plates and fibre reinforced polymer sheets, thus illustrating versatility in the modelling. Slender, squat, and slender-squat shear walls were investigated. The modelling utilized simple rectangular membrane elements for the concrete, truss bar elements for the steel and FRP retrofitting materials, and bond-link elements for the bonding interface between steel or FRP to concrete. The analyses satisfactorily simulated seismic behaviour, including lateral load capacity, displacement capacity, energy dissipation, hysteretic response, and failure mode.

Vibration Analysis of a Rotating Composite Shaft (복합재료 회전축의 진동해석)

  • Kim, Won-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.361-365
    • /
    • 2001
  • Laboratory tests are conducted to validate the mechanical model of a filament-wound composite shaft. Also, design charts are produced by validated analytical calculations based on the Timoshenko beam model of a layered steel/composite structure. The major results found are that steel/composite hybrid shafts can lead to better dynamic and static performances over steel or pure composite shafts of the same volume, and the most effective composite structures contain some steel in the form of a tubular core. These results can be used in the design process of composite boring bars and automotive drive shafts.

  • PDF