• Title/Summary/Keyword: Steam Reforming of Propane

Search Result 7, Processing Time 0.024 seconds

Solar Steam Reforming of Methane utilizing Solar Simulator (Solar Simulator를 이용한 프로판의 수증기 개질 반응)

  • Do, Han-Bin;Jang, Jong-Tak;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.259-261
    • /
    • 2009
  • Solar simulator를 이용한 프로판의 수증기 개질은 집광된 태양에너지를 이용하기 위한 목적으로 수행되었다. 본 연구에서는 이와 같은 태양열에너지의 화학적 축열을 실시하기 위해 Solar Simulator를 이용한 메탄의 수증기 개질을 연구하였다. 태양열 모사 램프로 1.24kW급 Xenon-arc lamp를 사용하였다. 반응기는 앞면의 Quartz window와 Absorber로 구성되어 있다. 램프의 빛은 Quartz window를 통하여 촉매층에 직접적으로 방사된다. 프로판의 수증기개질 반응은 고온에서 일어나기 때문에 열에 강한 SiC로 만들어진 Ceramic foam을 Absorber로 사용하였다. 촉매는 Absorber에 Wash-coat하여 사용하였으며, 담지된 촉매는 Ni을 활성성분으로 하는 ICI 46-6와 귀금속 촉매인 Ru/$Al_2O_3$를 사용하였다. 반응기는 SUS 재질로 제작되었으며, 반응기 외부는 Insulation을 하여 열손실을 감소시켰다. Propane과 Steam의 비율은 S/C ratio를 3으로 하여 실험하였다. 실험은 온도와 촉매에 따른 Solar Steam reforming의 반응특성을 분석하였다.

  • PDF

Activity test of post-reforming catalyst for removing the ethylene in diesel ATR reformate (디젤 자열개질 가스 내 포함된 $C_2H_4$ 제거를 위한 후개질기 촉매 활성 실험)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-221
    • /
    • 2009
  • Solid oxide fuel cells (SOFCs), as high-temperature fuel cells, have various advantages. In some merits of SOFCs, high temperature operation can lead to the capability for internal reforming, providing fuel flexibility. SOFCs can directly use CH4 and CO as fuels with sufficient steam feeds. However, hydrocarbons heavier than CH4, such as ethylene, ethane, and propane, induce carbon deposition on the Ni-based anodes of SOFCs. In the case of the ethylene steam reforming reaction on a Ni-based catalyst, the rate of carbon deposition is faster than among other hydrocarbons, even aromatics. In the reformates of heavy hydrocarbons (diesel, gasoline, kerosene and JP-8), the concentration of ethylene is usually higher than other low hydrocarbons such as methane, propane and butane. It is importatnt that ethylene in the reformate is removed for stlable operation of SOFCs. A new methodology, termed post-reforming was introduced for removing low hydrocarbons from the reformate gas stream. In this work, activity tests of some post-reforming catalysts, such as CGO-Ru, CGO-Ni, and CGO-Pt, are investigated. CGO-Pt catalyst is not good for removing ethylene due to low conversion of ethylene and low selectivity of ethylene dehydrogenation. The other hand, CGO-Ru and CGO-Ni catalysts show good ethylene conversion, and CGO-Ni catalyst shows the best reaction selectivity of ethylene dehydrogenation.

  • PDF

Propane Reforming in Gliding Arc Plasma Reformer for SynGas Generation (합성가스 생성을 위한 글라이딩 아크 플라즈마 개질기에서 프로판 개질)

  • Yang, Yoon-Cheol;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.869-875
    • /
    • 2009
  • The purpose of this paper is to investigate the optimal condition of the syngas production by reforming of propane using Gliding arc plasma reformer. The gliding arc plasma reformer in 3 phases has been newly designed and developed with a quick starting and fast response time. It can be applicable to the various types of fuels (Hydrocarbons $C_xH_y$), and it has a high conversion rate of fuels and high production of hydrogen. The parametric screening studies were carried out according to the changes of a steam feed amount i.e., steam/carbon ratio, total gas flow rate and input electric power. The optimum operating conditions were S/C ratio 2.8, total gas flow rate of 14 L/min and input electric power of 2.4 kW. The result of optimum operating conditions showed the 55 % $H_2$, 14 % CO, 15 % $CO_2$, 10 % $C_3H_8$ and 4 % $CH_4$. Also, $C_3H_8$ conversion, $H_2$ yield and $H_2$ selectivity were 90 %, 42 %, 15 %, respectively. The energy efficiency and specific energy requirements were 37 % and 334 kJ/mol respectively.

Study of Catalytic Performance of $La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3}$ Perovskite for Steam Reforming of Propane ($La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3-{\delta}$ Perovskite 촉매의 프로판 수증기 개질 반응에서의 특성 연구)

  • Kim, Jae-Ro;Kim, Nak-Hyeon;Sohn, Jung-Min
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.715-719
    • /
    • 2011
  • The $La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3}$(LSCN-x) perovskites were prepared by citric acid and EDTA using a sol-gel method. The LSCN-x was characterized by BET, XRD, SEM, $H_2$-TPR, EA and TEM. The catalytic performance of LSCN-x catalysts in steam reforming of propane in the temperature range 600~$800^{\circ}C$ was investigated. Propane conversion and hydrogen yield increased with an increase in the amount of added Ni up to x=0.5 in the B-site, denoted as LSCN-0.5, under S/C=1 and S/C=1.7 reaction conditions. The LSCN-0.5 catalyst exhibited the best performance under Ni-substitution of which propane conversion and hydrogen yield was 100%, 95.9% at $800^{\circ}C$ in the S/C=1.7 condition, respectively. The morphology of carbon deposited on the catalysts after reaction exhibited filamentous carbon and amount of carbon deposited on the catalysts after reaction increased with an increase in the amount of added Ni.

A Study on Reaction Kinetics in Steam Reforming of Natural Gas and Methane over Nickel Catalyst (니켈촉매 상에서 천연가스와 메탄의 수증기 개질 반응에 관한 Kinetics 연구)

  • Seong, Minjun;Lee, Young-Chul;Park, Young-Kwon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • Kinetics data were obtained for steam reforming of methane and natural gas over the commercial nickel catalyst. Variables for the steam reforming were the reaction temperature and partial pressure of reactants. Parameters for the Power law rate model and the Langmuir-Hinshelwood model were obtained from the kinetic data. As a result of the reforming reaction using pure methane as a reactant, the reaction rate could be determined by the Power law rate model as well as the Langmuir-Hinshelwood model. In the case of methane in natural gas, however, the Langmuir-Hinshelwood model is much more suitable than the Power law rate model in terms of explaining methane reforming reaction. This behavior can be attributed to the competitive adsorption of methane, ethane, propane and butane in natural gas over the same catalyst sites.

Autothermal Reforming of Propane over Ni/CexZr1-xO2 Catalysts (Ni 담지 CexZr1-xO2 촉매상에서 프로판의 자열개질반응)

  • Kong, Jin-Hwa;Park, Nam-Cook;Kim, Young-Chul
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • In this study, the catalytic performance and characterization of $Ni/Ce_xZr_{1-x}O_2$ were investigated using an autothermal reforming (ATR) process for hydrogen production. The $Ni/Ce_xZr_{1-x}O_2$ catalysts were prepared using the following methods: the water method (CZ-W), urea water method (CZ-UW) and urea, water and ethanol method (CZ-UWA). The performance of $Ni/Ce_xZr_{1-x}O_2$ catalysts in autothermal reforming of propane for hydrogen production was studied in a fixed-bed flow reactor. Reaction tests were conducted by using a feed of $H_2O/C_3H_8/O_2$=3/1/0.37 and $300{\sim}700^{\circ}C$. The CZ-UW and CZ-UWA catalysts showed higher propane conversion and hydrogen yield than the CZ-W catalyst. The activity test confirmed that the improvement in the water-ethanol catalyst was due to the low level of carbon deposition. SEM showed that the surface carbon consisted of clusters on the used CZ-UW catalyst, which is incontrast to the nano-fiber morphology observed on the used CZ-UWA catalyst. It was found that the amount of carbon deposition depends on the preparation method. Especially the $Ni/Ce_{0.75}Zr_{0.25}O_2$ was showed higher propane conversion and hydrogen yield than the other catalysts. Also TGA showed that the resistance of carbon deposition increase to Co addition.

Plasmatron Development for a Hydrogen Production (수소 생성을 위한 플라즈마트론 개발)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.48-53
    • /
    • 2006
  • The purpose of this paper is to investigate the optimal condition of the SynGas production by reforming of propane using plasmatron. Plasma was generated by air and arc discharge. The effects of applied steam, $CO_2$ or Ni-catalyst on propane conversion, yield of hydrogen and $H_2/CO$ ratio as well as correlation of syngas were studied. When the variations of $O_2/C_3H_8$ flow ratio, $H_2O/C_3H_8$ flow ratio and $CO_2/C_3H_8$ flow ratio were $0.94{\sim}1.48,\;4.3{\sim}10\;and\;0.8{\sim}3.05$ respectively, Under the condition mentioned above, result of $H_2O/C_3H_8$ flow ratio was maximum $H_2$ concentration, or $28.2{\sim}31.6%$, and result of $H_2O/C_3H_8$ flow ratio with catalyst was minimum CO concentration or $6.6{\sim}7.1%$ and the ratio of hydrogen to carbon monoxide($H_2/CO$) were $3.89{\sim}4.86$.