Browse > Article

A Study on Reaction Kinetics in Steam Reforming of Natural Gas and Methane over Nickel Catalyst  

Seong, Minjun (Department of Chemical Engineering, Kongju National University)
Lee, Young-Chul (Korea Gas Co. R&D Division)
Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.24, no.4, 2013 , pp. 375-381 More about this Journal
Abstract
Kinetics data were obtained for steam reforming of methane and natural gas over the commercial nickel catalyst. Variables for the steam reforming were the reaction temperature and partial pressure of reactants. Parameters for the Power law rate model and the Langmuir-Hinshelwood model were obtained from the kinetic data. As a result of the reforming reaction using pure methane as a reactant, the reaction rate could be determined by the Power law rate model as well as the Langmuir-Hinshelwood model. In the case of methane in natural gas, however, the Langmuir-Hinshelwood model is much more suitable than the Power law rate model in terms of explaining methane reforming reaction. This behavior can be attributed to the competitive adsorption of methane, ethane, propane and butane in natural gas over the same catalyst sites.
Keywords
steam reforming; natural gas; Ni catalyst; Langmuir-Hinshelwood model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Basini, K. Aasberg-Petersen, A. Guarinoni, and M. Ostberg, Catal. Today, 64, 9 (2001).   DOI   ScienceOn
2 A. Qi, S. Wang, C. Ni, and D. Wu, Int. J. Hydrog. Energy, 32, 981 (2007).   DOI   ScienceOn
3 H. Arbag, S. Yasyerli, N. Yasyerli, and C. Dogu, Int. J. Hydrog. Energy, 35, 2296 (2010).   DOI   ScienceOn
4 A. Aboudheir, A. Akande, R. Idem, and A. Dalai, Int. J. Hydrog. Energy, 31, 752 (2006).   DOI   ScienceOn
5 A. Heinzel, B. Vogel, and P. Hübner, J. Power Sources, 105, 202 (2002).   DOI   ScienceOn
6 Q. Zhang, X. Li, K. Fujimoto, and K. Asami, Appl. Catal. A: Gen., 288, 169 (2005).   DOI   ScienceOn
7 Y. Wang, F. Yoshiba, M. Kawase, and T. Watanabe, Int. J. Hydrog. Energy, 34, 3885 (2009).   DOI   ScienceOn
8 P. O. Graf, B. L. Mojet, J. G. van Ommen, and L. Lefferts, Appl. Catal. A: Gen., 332, 310 (2007).   DOI   ScienceOn
9 Y. Li, X. Wang, C. Xie, and C. Song, Appl. Catal. A: Gen., 357, 213 (2009).   DOI   ScienceOn
10 H. R. Jeong and M. S. Kang, Appl. Catal. B: Environ., 95, 446 (2010).   DOI   ScienceOn
11 H. S. Roh, K. Y. Koo, U. H. Jung, and W. L. Yoon, Curr. Appl. Phys., 10, S37 (2010).   DOI   ScienceOn
12 F. Gallucci, L. Paturzo, and A. Basile, Int. J. Hydrog. Energy, 29, 611 (2004).   DOI   ScienceOn
13 Y. Matsumura and T. Nakamori, Appl. Catal. A: Gen., 258, 107 (2004).   DOI   ScienceOn
14 H. S. Roh, K. W. Jun, W. S. Dong, J. S. Chang, S. E. Park, and Y. I. Joe, J. Mol. Catal. A: Chem., 181, 137 (2002).   DOI   ScienceOn
15 E. Ramirez-Cabrera, A. Atkinson, and D. Chadwick, Appl. Catal. B: Environ., 47, 127 (2004).   DOI   ScienceOn
16 H. S. Roh, K. W. Jun, and S. E. Park, Appl. Catal. A: Gen., 251, 275 (2003).   DOI   ScienceOn
17 W. S. Dong, H. S. K. W. Roh, S. E. Park, and Y. S. Oh, Appl. Catal. A: Gen., 226, 63 (2002).   DOI   ScienceOn
18 D. Li, K. Nishida, Y. Zhan, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, Appl. Clay Sci., 43, 49 (2009).   DOI   ScienceOn
19 M. Seong, K. Lee, J. H. Cho, Y. C. Lee, and J. K. Jeon, Clean Technol., 19, 51 (2013).   DOI   ScienceOn
20 W. Jin, X. Gu, S. Li, P. Huang, N. Xu, and J. Shi, Chem. Eng. Sci., 55, 2617 (2000).   DOI   ScienceOn
21 C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd ed., McGraw-Hill, New York (1991).
22 D. L. Hoang, S. H. Chan, and O. L. Ding, Chem. Eng. J., 112, 1 (2005).   DOI   ScienceOn
23 H. S. Roh, D. K. Lee, K. Y. Koo, U. H. Jung, and W. L. Yoon, Int. J. Hydrog. Energy, 35, 1613 (2010).   DOI   ScienceOn
24 B. T. Schadel, M. Duisberg, and O. Deutschmann, Catal. Today, 142, 42 (2009).   DOI   ScienceOn