DOI QR코드

DOI QR Code

Autothermal Reforming of Propane over Ni/CexZr1-xO2 Catalysts

Ni 담지 CexZr1-xO2 촉매상에서 프로판의 자열개질반응

  • Kong, Jin-Hwa (Department of advanced chemical engineering, Chonnam National University) ;
  • Park, Nam-Cook (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Young-Chul (Faculty of Applied Chemical Engineering, Chonnam National University)
  • 공진화 (전남대학교 대학원 신화학소재공학과) ;
  • 박남국 (전남대학교 응용화학공학부 및 촉매연구소) ;
  • 김영철 (전남대학교 응용화학공학부 및 촉매연구소)
  • Received : 2012.08.14
  • Accepted : 2012.09.21
  • Published : 2013.02.01

Abstract

In this study, the catalytic performance and characterization of $Ni/Ce_xZr_{1-x}O_2$ were investigated using an autothermal reforming (ATR) process for hydrogen production. The $Ni/Ce_xZr_{1-x}O_2$ catalysts were prepared using the following methods: the water method (CZ-W), urea water method (CZ-UW) and urea, water and ethanol method (CZ-UWA). The performance of $Ni/Ce_xZr_{1-x}O_2$ catalysts in autothermal reforming of propane for hydrogen production was studied in a fixed-bed flow reactor. Reaction tests were conducted by using a feed of $H_2O/C_3H_8/O_2$=3/1/0.37 and $300{\sim}700^{\circ}C$. The CZ-UW and CZ-UWA catalysts showed higher propane conversion and hydrogen yield than the CZ-W catalyst. The activity test confirmed that the improvement in the water-ethanol catalyst was due to the low level of carbon deposition. SEM showed that the surface carbon consisted of clusters on the used CZ-UW catalyst, which is incontrast to the nano-fiber morphology observed on the used CZ-UWA catalyst. It was found that the amount of carbon deposition depends on the preparation method. Especially the $Ni/Ce_{0.75}Zr_{0.25}O_2$ was showed higher propane conversion and hydrogen yield than the other catalysts. Also TGA showed that the resistance of carbon deposition increase to Co addition.

본 연구는 $Ni/Ce_xZr_{1-x}O_2$ 촉매를 이용하여 프로판의 자열개질반응을 통한 수소제조에 관한 것이다. $Ni/Ce_xZr_{1-x}O_2$ 촉매는 용매로서 물을 사용한 방법(CZ-W), 우레아와 물을 사용한 방법(CZ-UW), 우레아, 에탄올 및 물을 사용한 방법(CZ-UWA)으로 각각 제조하였다. 반응물질의 조성은 $Steam/C_3H_8$=3, $C_3H_8/O_2$=2.70 이었고, 반응은 상압 고정층 유통식 반응기에서 $300{\sim}700^{\circ}C$ 온도범위에서 진행하였다. 촉매제조시 용매에 우레아 및 에탄올을 첨가할 경우 촉매의 활성이 증가하였다. CZ-UW 촉매의 경우 클러스터형태의 탄소생성에 기인한 활성점 피막으로 인해 쉽게 비활성화가 초래됐다. 하지만 CZ-UWA 촉매의 경우 반응 후 탄소가 활성에 영향을 미치지 않는 나노파이버형태로 존재하여 활성저하가 발생되지 않음을 SEM을 통해 확인했다. 또한 $Ni/Ce_{0.75}Zr_{0.25}O_2$ 촉매의 전환율 및 수율이 더 좋게 나타났으며 또한 소량의 Cobalt를 첨가했을 때 탄소에 대한 저항성이 크게 향상됨을 TGA로 확인하였다.

Keywords

References

  1. Cherry, R. S., Int. J. Hydrogen Eng., 29, 125(2004). https://doi.org/10.1016/S0360-3199(03)00121-6
  2. Shinnar, R., Technol. Soc., 25, 455(2003). https://doi.org/10.1016/j.techsoc.2003.09.024
  3. Ahmed, S. and Krumpelt, M., Int. J. Hydrogen Eng., 26, 291(2001). https://doi.org/10.1016/S0360-3199(00)00097-5
  4. Acres, G. J. K., J. Power Sources, 100, 1(2001). https://doi.org/10.1016/S0378-7753(01)00879-5
  5. Heinzel, A., Vogel, B. and Hubner, P., J. Power Sources, 105, 4 (2002).
  6. Park, J. H., Lee, D. H., Lee, H. C. and Park, E. D., Korean J. Chem. Eng., 27(4), 1132(2010). https://doi.org/10.1007/s11814-010-0212-9
  7. Hori, C. E., Permana, H., Ng, K. Y. S., Brenner, A., More, K., Rahmoeller, K. M., Belton, D. N., Appl. Catal. B 16, 105(1998). https://doi.org/10.1016/S0926-3373(97)00060-X
  8. Fornasiero, P., Di Monte, R., RangaRao, G., Kaspar, J., Meriani, S., Trovarelli, A., Graziani, M., J. Catal. 151, 168(1995). https://doi.org/10.1006/jcat.1995.1019
  9. Ming, Q., Healey, T., Allen, L. and Irving, P., Catal. Today, 77, 51(2002). https://doi.org/10.1016/S0920-5861(02)00232-8
  10. Bhattacharyya, A., Chang, V. W. and Schumacher, D. J. Appl. Clay Sci., 13, 317(1998). https://doi.org/10.1016/S0169-1317(98)00030-1
  11. Johnston, B., Mayo, M. C. and Anshuman, K., Technovation, 25, 569(2005). https://doi.org/10.1016/j.technovation.2003.11.005
  12. Slagtern, A. and Oslbye, U., Appl. Catal. A: Gen., 110, 99, (1994). https://doi.org/10.1016/0926-860X(94)80109-6
  13. Kikuchi, R., Iwasa, Y., Takeguchi, T. and Eguchi, K. Appl. Catal. A: Gen., 281, 61(2005). https://doi.org/10.1016/j.apcata.2004.11.013
  14. Avci, A. K., Trimm, D. L. and Önsan, Z. I., Chem. Eng. J, 90, 77 (2002). https://doi.org/10.1016/S1385-8947(02)00069-4
  15. Kolios, G., Frauhammer, J. and Eigenberger, G., Chem. Eng. Sci., 55, 5945(2000). https://doi.org/10.1016/S0009-2509(00)00183-4
  16. Cavani, F., Trifiro, F. and Vaccari, A. Catal. Today, 11, 173(1991). https://doi.org/10.1016/0920-5861(91)80068-K
  17. Chen, Y. G., Tomishige, K., Yokoyama, K. and Fujimoto, K., Appl. Catal. A: Gen., 165, 335(1997). https://doi.org/10.1016/S0926-860X(97)00216-0
  18. Ohi, T., Miyata, T., Li, D., Shishido, T., Kawabata, T., Sano, T. and Takehira, K., Appl. Catal. A: Gen., 308, 194(2006). https://doi.org/10.1016/j.apcata.2006.04.025
  19. Rostrup-Nielsen, J. R., Catal. Today, 18(4), 305(1993). https://doi.org/10.1016/0920-5861(93)80059-A
  20. Recupero, V., Pino, L., Vita, A., Cipit, F., Cordaro, M. and Laganà, M., Int. J. Hydrogen Energy, 30, 963(2005). https://doi.org/10.1016/j.ijhydene.2004.12.014
  21. Ayabe, S., Ayabe, S., Omoto, H., Utaka, T., Kikuchi, R., Sasaki, K., Teraoka, Y. and Eguchi, K. Appl. Catal. A: Gen., 241, 261 (2003). https://doi.org/10.1016/S0926-860X(02)00471-4
  22. Basile, F., Basini, L., D'Amore, M., Fornasari, G., Guarinoni, A., Matteuzzi, D., Piero, G. D., Trifiro, F. and Vaccari, A., J. Catal., 173, 247(1998). https://doi.org/10.1006/jcat.1997.1942
  23. Bhattacharyya, A., Chang, V. W. and Schumacher, D. J. Appl. Clay Sci., 13, 317(1998). https://doi.org/10.1016/S0169-1317(98)00030-1
  24. Chen, Y. G., Tomishige, K., Yokoyama, K. and Fujimoto, K., Appl. Catal. A: Gen., 165, 335(1997). https://doi.org/10.1016/S0926-860X(97)00216-0
  25. Cho, D. H., Kim, W. S., Shin, J. H. and Lim, S. K., Korean J. Chem. Eng., 16(1) 45-51(2005).
  26. Park, J. H., Lee, D. H., Lee, H. C. and Park, E. D., Korean J. Chem. Eng., 27(4), 1132-1138(2010). https://doi.org/10.1007/s11814-010-0212-9
  27. Tao Huang, Wei Huang, Jian Huang and Peng Ji, Fuel Process. Technol. 1868-1875(2011).
  28. Park, S. H., Chun, B. H. and Kim, S. H., Korean J. Chem. Eng., 28(2), 402-408(2011). https://doi.org/10.1007/s11814-010-0356-7