• Title/Summary/Keyword: Steady-state calculation

Search Result 206, Processing Time 0.031 seconds

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

Parametric Study on the Aerodynamic Drag of Ultra High-speed Train in Evacuated Tube - Part 1 (진공튜브 내 초고속열차의 공기저항 파라메타 연구 - 1)

  • Kwon, Hyeok-Bin;Kang, Bu-Byoung;Kim, Byeong-Yun;Lee, Du-Hwan;Jung, Hyun-Ju
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • This study is devoted to understand the basic characteristics of the flowfield around a train in evacuated tube and to suggest an efficient numerical method to calculate the flowfield. To get steady-state solution in minimum calculation domain, various boundary condition have been tried for steady calculation and have been compared to the solution of unsteady calculation. At the train velocity of 300km/h, the aerodynamic drag results of both calculation method agreed very well. The drag ratio between on the open filed and in the tube from the calculation result by the suggested numerical method lied in the same fitting curve with that from the filed test of high-speed trains running in the line.

Non-stationary mixed problem of elasticity for a semi-strip

  • Reut, Viktor;Vaysfeld, Natalya;Zhuravlova, Zinaida
    • Coupled systems mechanics
    • /
    • v.9 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This study is dedicated to the dynamic elasticity problem for a semi-strip. The semi-strip is loaded by the dynamic load at the center of its short edge. The conditions of fixing are given on the lateral sides of the semi-strip. The initial problem is reduced to one-dimensional problem with the help of Laplace's and Fourier's integral transforms. The one-dimensional boundary problem is formulated as the vector boundary problem in the transform's domain. Its solution is constructed as the superposition of the general solution for the homogeneous vector equation and the partial solution for the inhomogeneous vector equation. The matrix differential calculation is used for the deriving of the general solution. The partial solution is constructed with the help of Green's matrix-function, which is searched as the bilinear expansion. The case of steady-state oscillations is considered. The problem is reduced to the solving of the singular integral equation. The orthogonalization method is applied for the calculations. The stress state of the semi-strip is investigated for the different values of the frequency.

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.

다수의 동일한 입력원을 갖는 ATM Multiplexer의 정확한 셀 손실 확률 분석

  • Choi, Woo-Yong;Jun, Chi-Hyuck
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.435-444
    • /
    • 1995
  • We propose a new approach to the calculation of the exact cells loss probability in a shared buffer ATM multiplexer, which is loaded with homogeneous discrete-time ON-OFF sources. Renewal cycles are identified in regard to the state of input sources and the buffer state on each renewal circle is modelled as a K(shared buffer size)-state Markov chain. We also analyze the behavior of queue build-up at the shared buffer whose distribution together with the steady-state probabilities of the Markov chain leads to the exact cell loss probability. Our approach to obtaining the exact cell loss probability seems to be more efficient than most of other existing ones since our underlying Markov chain has less number of states.

  • PDF

Kinetics of Reversible Consecutive Reactions

  • Park, Tae Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.243-245
    • /
    • 2013
  • Rate equations are exactly solved for the reversible consecutive reaction of the first-order and the time-dependence of concentrations is analytically determined for species in the reaction. With the assumption of pseudo first-order reaction, the calculation applies and determines the concentration of product accurately and explicitly as a function of time in the unimolecular decomposition of Lindemann and in the enzyme catalysis of Michaelis-Menten whose rate laws have been approximated in terms of reactant concentrations by the steady-state approximation.

Hydrodynamic modeling of semi-planing hulls with air cavities

  • Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.500-508
    • /
    • 2015
  • High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

Sequential Percentile Estimation for Sequential Steady-State Simulation (순차적 시뮬레이션을 위한 순차적인 Percentile 추정에 관한 연구)

  • Lee, Jong-Suk;Jeong, Hae-Duck
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.1025-1032
    • /
    • 2003
  • Percentiles are convenient measures of the entire range of values of simulation outputs. However, unlike means and standard deviations, the observations have to be stored since calculation of percentiles requires several passes through the data. Thus, percentile (PE) requires a large amount of computer storage and computation time. The best possible computation time to sort n observations is (O($nlog_{2}n$)), and memory proportional to n is required to store sorted values in order to find a given order statistic. Several approaches for extimating percentiles in RS(regenerative simulation) and non-RS, which can avoid difficulties of PE, have been proposed in [11, 12, 21]. In this paper, we implemented these three approaches known as : leanear PE, batching PE, spectral $P^2$ PE in the context of sequential steady-state simulation. Numerical results of coverage analysis of these PE approachs are present.

Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program (상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석)

  • Kim, Byoungsu;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

Investigation of the existing thermal noise theories for field-effect transistors using the monte-carlo method and the generalized ramo-shockley theorem (Monte-carlo 방법과 일반화된 ramo-shockley 정리를 통한 FET 열잡음 이론의 검증)

  • 모경구;민홍식;박영준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.107-114
    • /
    • 1996
  • Monte carlo method is especially a useful method for the analysis of thermal noise of semiconductor devices since the time dependence of microscopic details is simulated directly. Recently, a mthod for the calculation of the instantaneous currents of 2-dimensional devices, which is numerically more accurate than the conventional method, has been proposed using the generalized ramo-shockley theorem. Using this mehtod we investage the validity of the existing thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise using ramo-shockley theorem is shown to be applicable to 2 dimensional devices if the frequency of interest is low enough. The correlation between electrons in different regions of th echannel is shown not to be negligible. And we also obtian the spatial map of the noise in the channel region. By doing so, we show that the steady state nyquist theorem is the correct theory rather than the theory by van der ziel et.al.

  • PDF