DOI QR코드

DOI QR Code

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li (Nuclear Power Institute of China) ;
  • Junjie Pan (Nuclear Power Institute of China) ;
  • Bangyang Xia (Science and Technology on Reactor System Design Technology Laboratory) ;
  • Shenglong Qiang (Nuclear Power Institute of China) ;
  • Wei Lu (Nuclear Power Institute of China) ;
  • Qing Li (Nuclear Power Institute of China)
  • Received : 2022.09.07
  • Accepted : 2023.04.12
  • Published : 2023.09.25

Abstract

As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

Keywords

References

  1. R. Szilard, D. Kothe, P. Turinsky, The Consortium for Advanced Simulation of Light Water Reactors[C], Englarged Halden Programme Group Meeting, Rica Park Hotel Sandefjord, Norway, 2011. 
  2. C. Chauliac, J.M. Aragones, D. Bestion, et al., Nuresim - a European simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J], Nucl. Eng. Des. 241 (9) (2011) 3416-3426, https://doi.org/10.1016/j.nucengdes.2010.09.040. 
  3. W. Yang, C.J. Hu, T.C. Liu, et al., Research progress of China virtual reactor (CVR1.0) [J], Atomic Energy Sci. Technol. 53 (10) (2019) 1821-1832, https://doi.org/10.7538/yzk.2019.53.10.1821. 
  4. C.J. Permann, D.R. Gaston, D. Andrs, et al., MOOSE: enabling massively parallel Multiphysics simulation[J], SoftwareX (11) (2020), 100430, https://doi.org/10.1016/j.softx.2020.100430. 
  5. Y.Q. Wang, S. Schunert, J. Ortensi, et al., Rattlesnake: a MOOSE-based multi-physics multischeme radiation transport application[J], Nucl. Technol. 207 (2021) 1047-1072, https://doi.org/10.1080/00295450.2020.1843348. 
  6. R.L. Willamson, J.D. Hales, S.R. Novascone, et al., BISON: a flexible code for advanced simulation of the performance of multiple nuclear fuel forms [J], Nucl. Technol. 207 (2021) 954-980, https://doi.org/10.1080/00295450.2020.1836940. 
  7. D.R. Gaston, C.J. Permann, J.W. Peterson, et al., Physics-based multiscale coupling for full core nuclear reactor simulation[J], Ann. Nucl. Energy (84) (2015) 45-54, https://doi.org/10.1016/j.anucene.2014.09.060. 
  8. U. Rohde, S. Kliem, U. Grundmann, et al., The reactor dynamics code DYN3D - models, validation and applications[J], Prog. Nucl. Energy (89) (2016) 170-190, https://doi.org/10.1016/j.pnucene.2016.02.013. 
  9. T.J. Downar, H.G. Joo, D.A. Barber, et al., PARCS: A Multi-Dimensional Two-Group Reactor Kinetics Code Based on the Nonlinear Analytic Nodal method [R], PURDUE UNIVERSITY SCHOOL OF NUCLEAR ENGINEERING, 1998. PU/NE98-26. 
  10. M. Pusa, A. Isotalo, Uncertainty analysis of assembly and core-level calculations with application to CASMO-4E and SIMULATE-3[J], Ann. Nucl. Energy (104) (2017) 124-131, https://doi.org/10.1016/j.anucene.2017.01.042. 
  11. A.C.M. Alvim, F.C.D. Silva, A.S. Martinez, Improved neutron leakage treatment on nodal expansion method for PWR reactors[J]. World academy of science, engineering and technology, Int. J. Math.Comput. Phys.Electr. Comput. Eng. 6 (3) (2012) 228-231. 
  12. S.K. Hall, M.D. Eaton, M.P. Knight, The implementation of a simplified spherical harmonics semi-analytic nodal method in PANTHER[J], Ann. Nucl. Energy (57) (2013) 280-293, https://doi.org/10.1016/j.anucene.2013.02.015. 
  13. R.D. Lawrence, J.J. Dorning, Nodal Green's function method for multidimensional neutron diffusion calculations[J], Nucl. Sci. Eng. 76 (2) (1980) 218-231, https://doi.org/10.13182/NSE80-A19452. 
  14. W.B. Zhao, Y.R. Yu, X.M. Chai, et al., A simplified two-node coarse-mesh finite difference method for pin-with calculation with Sp3[C], Eur. Phys. J.Conf. 247 (6) (2021), 02023. 
  15. W.B. Zhao, X.M. Chai, B. Zhang, et al., A nodal method based on CMFD for pin-by-pin SP3 calculation[J], Ann. Nucl. Energy (167) (2022), 108849, https://doi.org/10.1016/j.anucene.2021.108849. 
  16. C.T. Tang, Development and verification of an SP3 code using semi-analytic nodal method for pin-by-pin calculation[C], J. Phys. Sci. Appl. 7 (2) (2017) 10-17, https://doi.org/10.17265/2159-5348/2017.02.002. 
  17. Y.Z. Li, W. Yang, S.C. Wang, et al., A three-dimensional PWR-core pin-by-pin analysis code NECP-Bamboo2.0[J], Ann. Nucl. Energy (144) (2020), 107507, https://doi.org/10.1016/j.anucene.2020.107507. 
  18. W. Boyd, S. Shaner, L.L. Li, et al., The OpenMOC method of characteristics neutral particle transport code, Ann. Nucl. Energy (68) (2014) 43-52, https://doi.org/10.1016/j.anucene.2013.12.012. 
  19. Y.X. Liu, K. Vaughn, B. Kochunas, et al., Validation of pin-resolved reaction rates, kinetics parameters, and linear source MOC in MPACT, Nucl. Sci. Eng. (195) (2020) 50-68, https://doi.org/10.1080/00295639.2020.1780853. 
  20. C. Zhao, X.J. Peng, H.B. Zhang, et al., A new numerical nuclear reactor neutronics code SHARK[J], Front. Energy Res. (9) (2021), 784247. 
  21. Y.X. Liu, R. Salko, K.S. Kim, et al., Improved MPACT energy deposition and explicit heat generation coupling with CTF, Ann. Nucl. Energy (152) (2021), 107999, https://doi.org/10.1016/j.anucene.2020.107999. 
  22. Z.Y. Liu, B. Wang, M.W. Zhang, et al., An internal parallel coupling method based on NECP-X and CTF and analysis of the impact of thermal-hydraulic model to the high-fidelity calculations[J], Ann. Nucl. Energy (146) (2020), 107645. 
  23. D. Ferraro, V. Valtavirta, M. Garcia, et al., OECD/NRC PWR MOX/UO2 core transient benchmark pin-by-pin solutions using Serpent/SUBCHANFLOW[J], Ann. Nucl. Energy (147) (2020), 107745, https://doi.org/10.1016/j.anucene.2020.107745. 
  24. H. Finnemann, H. Bauer, A. Galati, NEACRP 3-D LWR Core Transient Benchmarks, 1993. NEA/NSC/DOC (93)25[R]. [s.1.]: OECD/NEA. 
  25. K. Tomasz, J.D. Thomas, Pressurised Water Reactor MOX/UO2 Core Transient Benchmark (Final Report), NEA, 2007. NEA/NSC/DOC (2006)20[R]. 
  26. J.J. Pan, Q.F. Tang, X.M. Chai, et al., Development of Whole CORe Thermal Hydraulic Analysis Code CORTH[C]. M&C 2017 Internaltional Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 2017. Jeju, Korea. 
  27. I. Toumi, A. Bergeron, D. Gallo, et al., FLICA-4: a three-dimensional two-phase flow computer code with advanced numerical methods for nuclear applications[J], Nucl. Eng. Des. 200 (1-2) (2000) 139-155, https://doi.org/10.1016/S0029-5493(99)00332-5. 
  28. K. Ren, D. Wang, R.K. Salko, Implementation of the LAX-Wendroff Method in Cobra-TF for Solving Two-phase Flow Transport Equations[C], ICAPP, 2016. 
  29. Z.G. Li, P. An, J.J. Pan, et al., Development and verification of multi-physical coupling calculation code for typical pressured water reactor core[J], J. Nucl. Eng. Radiat. Sci. 7 (3) (2021), 034504, https://doi.org/10.1115/1.4048027. 
  30. Z.G. Li, P. An, W.B. Zhao, et al., Development and verification of PWR core transient coupling calculation software[J], Nucl. Eng. Technol. 53 (11) (2021) 3653-3664, https://doi.org/10.1016/j.net.2021.05.023. 
  31. M.P. Kinght, P. Bryce, Derivation of a refined PANTHER solution to the NEACRP PWR rod-ejection transient, Proc.Jt.Int.Conf.Math. Method (1) (1997) 302-313. Saratoga Springs. 
  32. D. Lee, T. Kozlowski, T.J. Downar, Multi-group SP3 approximation for simulation of a three-dimensional PWR rod ejection accident[J], Ann. Nucl. Energy (77) (2015) 94-100, https://doi.org/10.1016/j.anucene.2014.10.019. 
  33. M. Hursin, T.J. Downar, B. Kochunas, Analysis of the core power response during a PWR rod ejection transient using the PARCS nodal code and the DeCART MOC code[J], Nucl. Sci. Eng. (170) (2012) 151-167, https://doi.org/10.13182/NSE10-75. 
  34. M. Imron, Development and verification of open reactor simulator ADPRES[J], Ann. Nucl. Energy (133) (2019) 580-588, https://doi.org/10.1016/j.anucene.2019.06.049. 
  35. https://engineering.purdue.edu/PARCS/MOX_Benchmark. 
  36. W. Dongyong, P. Xingjie, C. Xiaoming, et al., Description and verification of KYLIN-V2.0 lattice physics code[J], Nucl. Eng. Des. (379) (2021), 111232, https://doi.org/10.1016/j.nucengdes.2021.111232.