• Title/Summary/Keyword: Steady-State Flow Test

Search Result 168, Processing Time 0.023 seconds

Ignition Characteristics According to Mixture ratio of Catalyst Ignitor using Green Propellant (친환경 추진제 점화기 설계 및 혼합비에 따른 점화 특성)

  • Chae, Byoung-Chan;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin;Jeon, Young-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.111-114
    • /
    • 2009
  • A catalyst ignitor of small thrust engine using hydrogen peroxide and kerosene was designed and fabricated, which confirmed mass flow rate for design pressure through the water cold-flow test in this study. In order to investigate ignition performance, it was changed that mixture ratio for kerosene mass flow rate in a position which heat of hydrogen peroxide decomposition comes to a steady state. And we confirmed stable ignition property in a wide range of mixture ratio.

  • PDF

UPFC Performance Control in Distribution Networks for DG Sources in the Islanding

  • Fandawi, Ahmed;Nazarpour, Daryoosh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • The flexible AC transmission system (FACTS) provides a new advanced technology solution to improve the flexibility, controllability, and stability of a power system. The unified power flow controller (UPFC) is outstanding for regulating power flow in the FACTS; it can control the real power, reactive power, and node voltage of distribution networks. This paper investigates the performance of the UPFC for power flow control with a series of step changes in rapid succession in a power system steady state and the response of the UPFC to distribution network faults and islanding mode. Simulation was carried out using the MATLAB's simulink sim power systems toolbox. The results, which were carried out on a 5-bus test system and a 4-bus multi-machine electric power system, show clearly the effectiveness and viability of UPFC in rapid response and independent control of the real and reactive power flows and oscillation damping [6].

Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects (유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

Effects of the Inlet Flow Conditions of a Helical Intake Port on the In-cylinder Swirl Characteristics (나선형 흡기포트 입구의 유동조건이 실린더 내 선회특성에 미치는 영향에 관한 연구)

  • 이지근;강신재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.9-18
    • /
    • 2000
  • Combustion and emission characteristics in a direct injection diesel engine is closely related to the intake port system. It is therefore important to understand the swirl flow characteristics formed by a helical intake port. However there are still many uncertainties. The purpose of this experimental study is to investigate the effects of the valve eccentricity ratio and the inlet flow conditions of a helical intake port on the characteristics of an in-cylinder swirl flow. A steady state flow test rig consisted of ISM(impulse swirl meter), LFM(laminar flow meter) and cylinder head with a helical intake port was used. The swirl ratio(Rs) and mean flow coefficient(Cf(mean)) with inlet flow conditions were measured. The results of these experiment can be summarized as follows. Swirl flow characteristics of a helical intake port are affected by the inlet flow conditions, and especially they are much affected by the length of a manifold runner and the rotational angle of a curved manifold runner.

  • PDF

Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations (초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘)

  • Loh, Byoung-Gook;Kwon, Ki-Jung;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

Hydraulic Properties of Duksan Hot-spring Area (덕산온천 지역의 수리적 성질)

  • 함세영;조병욱;성익환
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.101-118
    • /
    • 1999
  • The pumping test analysis on 28 pumping test data in Duksan hot-spring area was performed using the fractal model, the leaky fractal model, and the steady-state dual-porosity fractal model. The fractional flow dimension 1.9 or 2.0 was determined in the central put of the hot spring and the fractional flow dimension 1.5-1.7 in the marginal area. For the flow dimension 2.0, the correlation between the transmissivity and the productivity index by the aquifer loss was much better than that between the transmissivity and the specific yield by the total drawdown. On the other hand, for the flow dimension 1.9, the correlation between the generalized transmissivity and the productivity index was very similar to that between the generalized transmissivity and the specific yield.

  • PDF

Applications of Graph Theory for the Pipe Network Analysis (상수관망해석을 위한 도학의 적용)

  • Park, Jae-Hong;Han, Geon-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.439-448
    • /
    • 1998
  • There are many methods to calculate steady-state flowrate in a large water distribution system. Linear method which analyzes continuity equations and energy equations simultaneously is most widely used. Though it is theoretically simple, when it is applied to a practical water distribution system, it produces a very sparse coefficient matrix and most of its diagonal elements are to be zero. This sparsity characteristic of coefficient matrix makes it difficult to analyze pipe flow using the linear method. In this study, a graph theory is introduced to water distribution system analysis in order to prevent from producing ill-conditioned coefficient matrix and the technique is developed to produce positive-definite matrix. To test applicability of developed method, this method is applied to 22 pipes and 142 pipes system located nearby Taegu city. The results obtained from these applications show that the method can calculate flowrate effectively without failure in converage. Thus it is expected that the method can analyze steady state flowrate and pressure in pipe network systems efficiently. Keywords : pipe flow analysis, graph theory, linear method.

  • PDF

Pressure Drop and Leakage Performances of Flat Seals with Inclined Grooves (경사 그루브를 갖는 평판 실의 압력 강하 및 누설 성능)

  • Jung, Jin Woo;Jeong, Gwon Jong;Hwang, Sung Ho;Kim, Tae Ho;Kim, Eojin
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.213-221
    • /
    • 2022
  • This paper presents performance measurements of pressure drop and leakage flow rate of test flat seals with asymmetric inclined grooves. This study aims to reveal the influence of groove shapes, often machined in radial film riding-face seals, in forming a hydrodynamic wedge on leakage performance. A test facility was developed, and test seals were manufactured to study the effects of the inlet pressure level, ratio of inlet to outlet pressure, seal groove length, and seal groove height on the steady-state pressure drop and leakage performance. A series of tests were conducted, and the test data were compared to the predictions from a simple and efficient mathematical model using a one-dimensional Reynolds equation. The test results revealed that an increase in the inlet pressure increased the pressure drop through the test seals. The leakage flow rate increased significantly as the inlet pressure and ratio of the inlet to outlet pressure increased. The groove shape also affects seal performance. An increase in the groove length and height resulted in an evident increase in the leakage flow rate. The simple model predictions underestimated the leakage flow rates but showed good agreement with the trend in the measurements for all test operating conditions and changes in the groove shape.

Transient Heat Flux Evaluation of Underwear for Protective Clothing using Sweating Manikin (발한 마네킹을 이용한 보호복용 언더웨어의 동적(Transient) 열류량 평가)

  • Park, Hye-Jun;Kim, Hyun-Jung;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.1
    • /
    • pp.157-165
    • /
    • 2008
  • Transient thermal response of five types of underwear(cotton jersey, wool jersey, nylon jersey, cotton mesh and polyester mesh) for a protective coverall is evaluated using a sweating thermal manikin. Experimental protocol for transient thermal response of the sweating thermal manikin was also proposed. As results, it was found that steady state thermal response from sweating thermal manikin was not sensitive enough to evaluate thermal comfort of the experimental garments. However, when half time is used as an index of the heat flux change in transient thermal response, difference was found among underwear materials. Half time of cotton was the shortest and heat transfer of cotton was the fastest followed by polyester mesh, cotton jersey, nylon jersey and wool jersey. Dynamic thermal response of wool underwear was quite different from that of cotton underwear. Wool shows quite less heat flow at the initial stage, however, moisture permeability of wool was higher than cotton at the later stage. It was difficult to distinguish surface temperature difference visually using thermogram taken right before the completion of dry and wet test in steady state thermal response.

Thrust Measurement in a Impulse Facility (충격파 시험장치를 이용한 추력 측정)

  • Jin, Sangwook;Hwang, Kiyoung;Park, Dongchang;Min, Seongki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.310-319
    • /
    • 2017
  • This paper introduces the method how to measure the thrust in impulse facility. In a Facility having such a short duration time of steady flow, there's no time to reach a steady state of the forces acting on model so that the test model vibrates until the end of the flow. The forces exerted on an engine exist with vibration so that the usual force balance can not be used. SWFB(Stress Wave Force Balance) technique is utilized in a shock tunnel to get the thrust. As an example, a model force balance has been calculated its strain against impulse force by using FEM(Finite Element Method). A transfer function between the impulse force and strain has been obtained by the way of de-convolution.

  • PDF