• Title/Summary/Keyword: Steady state line

Search Result 254, Processing Time 0.024 seconds

Decision Variable Design of Discrete Systems using Simulation Optimization (시뮬레이션 최적화를 이용한 이산형 시스템의 결정변수 설계)

  • 박경종
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.63-69
    • /
    • 1999
  • The research trend of the simulation optimization has been focused on exploring continuous decision variables. Yet, the research in discrete decision variable area has not been fully studied. A new research trend for optimizing discrete decision variables ha just appeared recently. This study, therefore, deals with a discrete simulation method to get the system evaluation criteria required for designing a complex probabilistic discrete event system and to search the effective and reliable alternatives to satisfy the objective values of the given system through a on-line, single run with the short time period. Finding the alternative, we construct an algorithm which changes values of decision variables and a design alternative by using the stopping algorithm which ends the simulation in a steady state of system. To avoid the loss of data while analyzing the acquired design alternative in the steady state, we provide background for estimation of an auto-regressive model and mean and confidence interval for evaluating correctly the objective function obtained by small amount of output data through simulation with the short time period. In numerical experiment we applied the proposed algorithm to (s, S) inventory system problem with varying Δt value. In case of the (s, S) inventory system, we obtained good design alternative when Δt value is larger than 100.

  • PDF

A Study on Efficient Calculation of Effective Reactive Power Reserves Using Sensitivity Analysis

  • Bae, Moonsung;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1689-1696
    • /
    • 2017
  • In recent academic and industrial circles of the Republic of Korea, the securement of available reactive power reserve against the line faults is at issue. Thus, simulations have been performed for the securing of effective reactive power reserve (effective Q) to prepare for the line faults and improve reactive power monitoring and control methods. That is, a research has been conducted for the fast-decoupled Newton-Raphson method. In this study, a method that distinguishes source and sink regions to carry out faster provision of information in the event of line fault has been proposed. This method can perform quantification with the formula that calculates voltage variations in the line flow. The line flow and voltage changes can be easily induced by the power flow calculation performed every second in the operation system. It is expected that the proposed method will be able to contribute to securement of power system stability by securing efficient reactive power. Also, the proposed method will be able to contribute to prepare against contingencies effectively. It is not easy to prepare quickly for the situation where voltage drops rapidly due to the exhaustion of reactive power source by observing voltage information only. This paper's simulation was performed on the large scale Korean power system in steady state.

A Security-oriented Operation Scheme of FACTS Devices to Cope with A Single Line-faulted Contingency (단일 선로고장시 정적 안전도 향상을 위한 유연송전기기 운전 방안)

  • Lim, Jung-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • This paper presents how to find proper operating points of FACTS devices to enhance the steady-state security level considering line contigency analysis. Three generic types of FACTS devices such as series controllers, shunt controllers, and series-shunt controllers are introduced and applied to moximize a security margin and to minimize security indices. Security indices related to line flows and bus voltages are utilized and minimized iteratively in this paper. Contingency analysis is performed to detect the most severe single line fault. In various load conditions, FACTS devices are tested to establish appropriate preventive or corrective action without generation re-dispatching or load shedding. The FACTS operation scheme is verified on the IEEE 57-bus system in a line-faulted contingency.

Design of Self-Starting Hybrid Axial Flux Permanent Magnet Synchronous Motor Connected Directly to Line

  • Eker, Mustafa;Akar, Mehmet;Emeksiz, Cem;Dogan, Zafer;Fenercioglu, Ahmet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1917-1926
    • /
    • 2018
  • In view of the current state of the reserves of electric energy generated resources and the share of electric motors in electricity consumption, many researches and studies related to efficiency in electric motors are being made. The presented work is related to the Axial Flux Permanent Magnet Synchronous Motor (AF-PMSM), which has recently undergone significant work based on the development of magnet and motor technology. In this study, a novel AF-PMSM was designed analytically through Finite Element Method (FEM) which can be started by connecting to a line such as an asynchronous motor in a transient state and can operate with high efficiency and power factor after synchronization in steady state without the need for an expensive motor drive. According to the obtained FEM results, a design with an efficiency class of IE4 of 5.5 kW shaft power, a 4 poles motor was obtained. As a result, economic calculations indicate that the extra cost of the designed Line start AF-PMSM with respect to the asynchronous motor is rapidly compensated by energy saving due to a more efficient operation, especially constant speed operations. As a result of the analysis obtained, the targeted values are reached. For induction motors and radial flux permanent magnet synchronous motors, a good alternative motor that can operate with high efficiency and power factor has been obtained.

Design of stationary reference frame current and disturbance rejection control algorithms for a grid connected inverter (계통 연계형 인버터의 정지좌표전류제어 및 외란제거 제어알고리즘 설계)

  • Kim, Seonghyeon;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.154-160
    • /
    • 2020
  • This paper presents a grid current control algorithm for a grid connected inverter (GCI) system in a stationary reference frame. When a Proportional Integral (PI) controller at a stationary reference frame is used in a GCI system, steady state error and phase lags are presented because AC signals are controlled at a stationary reference frame. In this paper, a feedforward controller is applied to the PI controller to compensate the steady state error and phase lags by improving command tracking performance. In addition, disturbance rejection control is applied to the PI controller to protect the GCI system by eliminating disturbance, grid voltage in a GCI system, when a grid fault such as line-to-line fault, happens. The proposed GCI current control algorithm is analyzed in a frequency domain and a simulation model of the proposed GCI current control system is developed for verification of the performance.

Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory (평판형 증발부를 갖는 루프히트파이프에 대해 박막이론을 적용한 해석적 모델링)

  • Jung, Eui-Guk;Boo, Joon-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1079-1085
    • /
    • 2010
  • A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained.

A Study on Foam Mixing Characteristics in Steady State to Enhance the Performance of Proportioner for Foam System (포 소화설비용 소화약제 혼합장치의 성능향상을 위한 정량 혼합특성에 관한 연구)

  • Ku, Jae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.63-68
    • /
    • 2009
  • This study describes to analyze foam mixing characteristics in steady state to enhance the performance of proportioner for foam system designed to accurately proportion a foam liquid concentrate into a water stream up to constant concentration. The proportioner developed is experimentally evaluated in performance evaluation system consisted of a pump, tanks, pressure gauges, flow meters, a nozzle. As a result, the foam mixing performance of the line proportioner is found to increase with increased the water flow rate due to the venturi effect and with increased the cross-sectional area of the orifice and is analysed with 3 % in the error rate of $\pm4%$. For the pressure proportioner, the foam mixing performance is analyzed to increase with increased the water flow rate and with increased the inlet pressure and is analysed with 3% in the error rate of $\pm2%$.

Finite Control Set Model Predictive Control with Pulse Width Modulation for Torque Control of EV Induction Motors (전기자동차용 유도전동기를 위한 유한제어요소 모델예측 토크제어)

  • Park, Hyo-Sung;Koh, Byung-Kwon;Lee, Young-il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2189-2196
    • /
    • 2016
  • This paper proposes a new finite control set-model predictive control (FCS-MPC) method for induction motors. In the method, the reference state that satisfies the given torque and rotor flux requirements is derived. Cost indices for the FCS-MPC are defined using the state tracking error, and a linear matrix inequality is formulated to obtain a proper weighting matrix for the state tracking error. The on-line procedure of the proposed FCS-MPC comprises of two steps: select the output voltage vector of the two level inverter minimizing the cost index and compute the optimal modulation factor of the minimizing output voltage vector in order to reduce the state tracking error and torque ripple. The steady state tracking error is removed by using an integrator to adjust the reference state. The simulation and experimental results demonstrated that the proposed FCS-MPC shows good torque, rotor flux control performances at different rotating speeds.

Operating Characteristics of a Sintered-Metal Wick/Methanol Loop Heat Pipe Having a Bypass Line (소결금속 윅과 메탄올을 사용하며 바이패스라인이 부착된 루프히트파이프의 작동 특성)

  • Boo, Joon-Hong;Jung, Eui-Guk
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2130-2135
    • /
    • 2007
  • Operating characteristics of a loop heat pipe (LHP) having a bypass line was investigated experimentally. The LHP had a sintered metal wick as a capillary structure and methanol as a working fluid. The sintered metal wick was made of stainless steel of which the average pore size was 5 ${\mu}m$and porosity of 47%. A bypass line of a small diameter was attached between the vapor escape passage and the liquid reservoir. The dimension of the flat evaporator was $50(L){\times}40(W){\times}30(H)$ mm and that of the condenser was $50(L){\times}40(W){\times}11(H)$ mm. Wall and pipe material of the LHP was stainless steel and heating area was 35(W) mm${\times}$35(L) mm. The inner diameters of vapor and liquid transport lines were 4.0 mm and 2.0 mm, and the lengths of the two lines were both 0.5 m. The LHP was tested for three different tilt angles of horizontal, favorite tilt, and adverse tilt. The thermal load range was up to 290 W at the condenser above evaporation position. Furthermore, the effect of a bypass line on the start-up transient as well as steady-state operation was presented and discussed.

  • PDF

A friction compensation scheme based on the on-line estimation with a reduced model (축소 모델을 이용한 마찰력의 마찰력의 온라인 추정 및 보상기법)

  • Choi, Jae-Il;Yang, Sang-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.174-180
    • /
    • 1996
  • The friction is one of the nonlinearities to be considered in the precise position control of a system which has electromechanical components. The friction has complicated nonlinear characteristics and depends on the velocity, the position and the time. The conventional fixed friction compensator and the controller based on linear control theory may cause the steady state position error or oscillation. The plant to be controlled in this study is a positioning system with a linear brushless DC motor(LBLDCM). The system behaves like a 4th-order model including the compliance and the friction. In this study, the plant model is simplified to a 2nd-order model to reduce the computation in on- line estimation. Also, to reduce the computation time, only the friction is estimated on-line while the mass and the viscous damping coefficient are fixed to the values obtained from off-line estimation. The validity of the proposed scheme is illustrated with the computer simulation and the experiment where the friction is compensated by using the estimation.

  • PDF