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Abstract

The research trend of the simulation optimization has been focused on exploring
continuous decision variables. Yet, the research in discrete decision variable area has
not been fully studied. A new research trend for optimizing discrete decision variables
has just appeared recently.

This study, therefore, deals with a discrete simulation method to get the system
evaluation criteria required for designing a complex probabilistic discrete event system
and to search the effective and reliable alternatives to satisfy the objective values of
the given system through a on-line, single run with the short time period. Finding
the alternative, we construct an algorithm which changes values of decision variables
and a design alternative by using the stopping algorithm which ends the simulation
in a steady state of system.

To avoid the loss of data while analyzing the acquired design alternative in the
steady state, we provide background for estimation of an auto-regressive model and
mean and confidence interval for evaluating correctly the objective function obtained
by small amount of output data through simulation with the short time period.

In numerical experiment we applied the proposed algorithm to (s, S) inventory
svstem problem with varving 4t value. In case of the (s, S) inventory system, we

obtained good design alternative when 4t value is larger than 100.

1. INTRODUCTION past ones. These systems, therefore, are not
Being improved manufacturing fields, the . )
solved by simple analytical methods or
syvstems are larger and more complex than the
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mathematical methods which have the theoretical
assumptions, We must solve some problems to
use discrete event simulation as a design tool of
a complex and stochastic discrete event system.
First, the values of object functions and the
constraints to evaluate performance measures of
a system are obtained by not simple calculation
of known functions but simulation run. Second,
because the results of simulation run including
stochastic elements on a stochastic discrete
event system we require an efficient statistical
analysis and a stochastic optimization. Third,
when the types of a simulation model are a
steady-state simulation, to calculate performance
measures of an alternative in a steady state we
need many output data and expensive calculation
the have the
if the

searching spaces of a considering problem are

data
Fourth,

costs because output

properties of auto-correlation.

large we need more calculation costs than
general cases.

Therefore, this study deals with a discrete
simulation method to get the system evaluation
criteria required for designing a complex
stochastic discrete event system and to search
the effective and reliable alternatives to satisfy
the objective values of the given system
through a on-line, single run with the short
Finding the

construct an algorithm which changes the values

time period. alternative, we
of decision variables and a design alternative by
using the stopping algorithm which ends the

simulation in a steady state of the system.

2. LITERATURE REVIEWS

On simulation optimization, discrete stochastic
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optimization methods with discrete decision
variables are studied using simulated annealing
(Ahmed, Alkhamis, and Hasan 1997), stochastic
ruler method (Yan and Mukai, 1992), stochastic

comparison method (Gong, Ho, and Zhai, 1992),

random  walk  (Andradottir  1996), nested
partitions method (Shi and Sigurdur 1997),
evolutionary(genetic) algorithm (Pierreval and

Tautou 1997), multi-armed bandit method (Barry
and Fristedt 1985), learning automata (Yakowitz
1990), But the methods

optimize simulation process using multiple runs.

and Lugosi and etc.

Also, in the optimal design of discrete event

systems using discrete event simulation

methods, the previous researches not considered
long runs of simulation which must mentioned,
and only focused on the algorithm of stochastic

optimization based on simulation.

3. FEASIBLE SOLUTION SEARCH
ALGORITHMS
The method to search design alternatives that

are occurred in the manufacturing system fields

in a single run simulation is proposed in

algorithm 3.1.

[Algorithm 3.1]

Step 1: Set objective functions( f{ X)),
decision  variables( x;,7j=1,...,%), objective
values( A;), the value of monotonic increasing
and decreasing( 4x;) about decision variables, ,
x;,7=1,...,n, and time intervals to evaluate
ohiective functions. modifv the value of decision
variahles{ 48). and start simulation.

Sten  2: During  simuilation
ohiective fimetions with
values(reference: Algorithm 3.2).
value of decision variables as
direction. and cantinnie simmilation.

Sten 3 When we check the stonning condition
of the aloorithm if its conditions are satisfied
then the combinations of decision variables that

we  comnare
ohiective
change the

dx; to right

- 64 -




g Al g ol d e 3] ‘995 A

10

have been frequently visited to current times are
set by x},j=1,...,n

Sten 4: Tlsing the last solition to be ohtained
we nrocess verification simulation with abundant
run lengths and collect necessary data.

3.1 Configuration of Decision Variables
We explain the basic algorithm to change

value of decision variable, x; at each 4t

during simulation according to the compared

results of objective functions and objective

values. We observe the value of objective
functions that are obtained by simulation output
is either a monotonic increasing function or a

monotonic decreasing function. Using the forms
[(fi= 0, (f>0), or (fi<O)], the

value of decision variable j at time t-1 and ¢,

of given A,

x;+-1 and x,, the value of objective functions

[ at time ¢t-/ and ¢ y;,~, and y;, that are

obtained from simulation model, the value of

objective functions { at time ¢, y;; that are

obtained from simulation model, and the value of
the given objective values, ¢. The definition of
notations and algorithms to configure the value

of decision variables can be described as

follows:

x; + The value of decision variable, j, at a time,
t, of a simulation output analysis.
v;+ The obtained value of a object function, i,
at a time, t, of simulation output analysis.
countéi When we observe the change from
X; -1 to x;, of decision variable, j, the
number of unchanged value of y.
countft When we observe the change from
X;1-1 to x;, of decision variable, j, the
number of increased value of y.
count; © When we observe the change from

rets =27 1999.109 #YUSw

x; -1 to x;, of decision variable, j, the
number of decreased value of y.
a; b; The lower bound and the upper bound of
decision variable, J.

L}*: The sets of the decision variables when
if the value of a decision variable, xj is
increased(decreased) the value of a object
function, i, is increased(decreased).

L} 7: The sets of the decision variables when
if the value of a decision variable, x; is
decreased(increased) the value of a object
function, i, is increased(decreased).

L?-I The sets of decision variables that are not

included in LT+ or L} .

[Algorithm 3.2]

Step 0: About decision variables,
x,j=1,...,n, we assign count)=0, count; =0,
count; =0, and set the value of a; and b,
Also, about a object function, i, we assign the
value of ¢ and build up the list of L}, L}~
and LY.
Step 1: According to the conditions of x;,-|
and x,;, with x;,7=1,...,n go to the Step 5
after execute the Step 2, Step 3, or Step 4

D If x;,-,<x;, then go to the Step 2.

2) If x;;-1>x,, then go to the Step 3.

3) If x;,-1= x;, then go to the Step 4.
Sten 2: Acrording to the ohiect function. 1. we
execute only one case of the steps listed below.
(case 1) A;=(fi=0)
Step 2.1.1: If x,€L% then go to the Step 2.1.3,
otherwise move to the Step 2.1.2. _
Step 2.1.2: If y;,=c then count}= county+ 1

If y;<c and x;,£ L] then count]=
count}L +1

If y,<c and x;,E L™ ‘then count; =
count; +1

If y;>c and x;,E L™ then count; =
count; +1

If y.>c and x,,€ L} then count]=
count] +1

Step 2.1.3: If y; ,~c then count6= count6+1

f y,,-1<y;, and y;,<c then countf=
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countj+ +1

If yii-1=yis
count; +1

It vi—12¥i
count; +1

I ¥
countf +1
(case 2) A;=(fKo)

Step 2.2.1: If x,£ LY then go to the Step 2.2.3
otherwise go to the Step 2.2.2. ‘
Step 2.2.2: If y; <c then county= county+1

and y;;>c then count; =

and y;,<c then count; =

and y; ¢ then count,*=

If y;,=c and x,€ L% then count;=
count; +1

If y,,>c and x,€ L] then count]=
count; +1
Step 2.2.3: If y; <c then count6= count6+1

If v, 1<y, and y;,~c then count;=
count; +1

If y;,-1>y;, and ¥,,2c then count; =
count; +1

(case 3) A;=(f>0¢)

Step 2.3.1: If x,€ L? then go to the Step 2.3.3
otherwise go to the Step 2.3.2. ‘
Step 2.3.2: If y; >c then county= county+1

If y,,<c and x,€L;" then count;=
count; +1

If y,,<c and x,€L; then count; =
count; +1
Step 2.3.3: If y; >c then count)= counth+1

If y:.:-1<y,: and y,,<c then count,-+=
countfﬂ

If y;i-1>y:,, and y,,<c then count; =
count; +1
Sten 3: Accordino ta the ohiect funetion [ we

execute only one case of the steps listed below.
(case 1) A;=(fi=c¢)

Step 3.1.1: If x,EL? then go to the Step 3.1.3
otherwise go to the Step 3.1.2. '

Step 3.1.2: If v, =c then county= county+1

If y,<c and x;,€L % then coum‘,~+ =
count] +1

If y;,<c and x;,E L then count; =
count; +1

If vy, >c and x;,€ L]" then count;=

count; +1

If y;>c and x;,E L} then count] =
count; +1

Step 3.1.3: If y;,=c then count{f count6+1

If y;,-1=y;y and y;<c then count,-+=
countj++1

If y;i-1=y:;; and y,,>c then count;=
count; +1

If v,y and y,,<c then count;=
count; +1

If y,;,->y.: and y;,>c then countf=
countf+l

(case 2) A;,=(fK¢)

Step 3.2.1: If x;,€ L? then go to the Step 3.2.3
otherwise go to the Step 3.2.2. _
Step 3.2.2: If y; <c then county= county+1

If y;,,2c and x;€ L7* then count; =
count; +1
If y.,2c and x,€ L} then count]=
countf +1
If v;,-1<y,;, and y;,>c then count;=
count; +1

Step 3.2.3: If y; <c then counthy= county+1

If y,,-1<y;, and y;,2c then countf:
countf+l
If y;i-1>vy,: and y,,2c then count; =
count; +1

(case 3) A;=(f>o)

Step 3.3.1: If x;,S LY then go to the Step 3.3.3
otherwise go to the Step 332 .
Step 3.3.2: If y; >c then county= county+1

If y;,<c and x,€ L7" then count/=
count,-*+1
If y,,<c and x,€ L7 then count; =
count; +1

Step 3.3.3: If y; >c then county= count)+1

If y;i-1<y;, and y,,<c then count; =
count; +1

If y,4-1>y:.; and y,,<c then countf=
countf+1
Sten 4: According to the ohiect function. /. we

execute only one case of the steps listed below.
(case 1) A;=(fi=0)

Step 4.1.1: If |y, ,—c|< & then count)= count}
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If ly.;—cl>e and x;,€ LY then go to the
Step 4.1.3 otherwise go to the Step 4.1.2
Step 4120 If «x;,&€ L7" then count; = count;
+1

If x;,€ L7 then count]= count; +1
Step 4.13: count] = count] +1 with probability
0.5 or count; = count; +1 with probability 0.5
(case 2) A,=(fLc)
Step 4.2.1: If x;,€ L? then go to the Step 4.2.3
otherwise go to the Step 4.2.3

Step 4.2.2: If y; ,<c then count{;= countﬁ+l

If y.,2c and x,€ LTT then count; =
count; +1

If v,,>c and xE€ L] then count=
coum‘fﬂ
Step 4.2.3° If y; <c then countéz count6+1

If y,,1<y;, and y;,2c then count]=
countf+1

If ¥.4-1>¥,, and y;,2c then count;=
count; +1

(case 3) A,=(F ¢

Step 4.3.1: If x;,€ LY then go to the Step 4.3.3
otherwise go to the Step 4.3.2

Step 432! If y; >c then county= county+1

If y,,<c and x,€ L% then count]=
count; +1

If y,,<c and x;€ L]  then count; =
count; +1
Step 4.3.3: If y;,>c then cozmt6= coum‘é+l

If v,4-1<y,, and y;;,<c then count; =
count; +1

f y,y-1>y,:, and y;,<c then countf=
count; +1
Step 5° According to the decision variables,
x;,7=1,...,n we execute only one case of the

below lists.

count” = max [count?, count} , count; 1(If
more than one, select randomly)

If count”= count] then

Xjt+1= min[(x,-,,+ ij),b,‘]
If count” = count; then
%) 141 = max[a;, (x; ,— 4x,)]

3.2 Stopping Algorithm

When the algorithm satisfies the objective
functions or the alternatives at arbitrarily time
point we must stop the simulation. We explain

the notations and algorithm as following to

inspect the stopping conditions of the proposed

algorithm at ¢.

x;: In current time ¢ and the number of K, the

value of decision variables when the visited
frequency of the value of decision variables
is the most.

K. The number of decision variables that visit
the allowed intervals of objective values to

inspect the stopping conditions. K is a

constant and set by user{K=I, 2, .., n).

7. The integer value to calculate the tolerance
(xj= 7 4x;) about x;,j=1,...,n for stopping

conditions(=0, 1, 2, ..,.m).
[Algorithm 3.3]

Sten 0. Set the integer value of K and 7.
Step 1. About the decision variables,
xi,7=1,...,n we process the next step and if

it is satisfied by all decision variables then go
to the Step 2.

Using Algorithm 3.1, we obtain xj, and if the
all values of decision variables, x;,7=1,...,n,
are included in [x}* 7 4x;] about K then go

to the Sten 2. Otherwise. ston the nronnsed
aloorithm and continue simulation to given time

t.
Sten 2: With abhiective vahlie. i. if it is satisfied
by conditions then ston the similation.
Otherwise. If 7 is 0 then ston the alporithm
and the simmlation. and conclude an altemative
which satisfies the ohiective vahie is not exist.
If 7>0 then we  change v/ to
7 =max[0, » —1] and continue simulation to
time f+ A44&.

3.3 The Evaluation of Objective Functions in
Steady State
In this paper we develop an algorithm to

estimate the value of objective functions during
short A4t based on the method proposed by
Voss, Haddock, and Willemain (1996). Because
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the output data obtained during a short transient
period exist strong correlation between data, the
output process expressed very well by the
auto-regressive model (Fishman 1978).

The auto-regressive model, AR(p), with order,

p, expressed by Equation (1) (Fuller 1996).

yt=¢0+g‘(¢03’t—1+51. t=1,2,...

If we suppose the average of system

responses converges to only one point, the
average in steady state, pu=u(¢), is expressed

by Equation (2).

W(0)=lim L ELX)= (1= 31607 @

And the conditional least square estimate of

® is obtained by Equation (3) (Fuller 1996)

and the procedures are explained by the
Algorithm 3.4.
P=A"v, (3

[Algorithm 3.4])

Step 1: Select the maximum value, P, of p.
Step 2: Calculate S*(p) at 0<p< .

Step 3: Calculate FIC(p) at 0<p=<pDpux-

Step 4: Select order, p°, to minimize FIC(p).

Also, ,t/z\,, which is the estimation of average,

p( @), in steady state is expressed by Equation
(4)

correction. The method to obtain average in

to consider standard average and bias

steady state is arranged in Algorithm 35 and

i, is applied to Algorithm 3.1, 3.2, and 3.3.

N~ o) “
i _=§J.+1y: , iiﬂy,)

1= i=p—1i =n—

(n=p (1= 38

Un= Y, pt+

[Algorithm 3.5]

=3 1999.109 st

Step 1: Calculate p" using Algorithm 3.4.
Step 2: Calculate ® using Equation (3).
Step 3: Calculate ;7,, using Equation (4).

4. EXPERIMENTATION
EVALUATION

We handle an (s,S) inventory control problem

AND

(Dincluded in all cases at the considering example

and explain the results. We use the example
which is explained at Law and Kelton (1995).

In this experimentation, we set (s,S) as (40,
60) and process long run simulation. And using
the results we test if we find the (s,S) near to
the experimental value with changing J4¢ To
determine the experimental value we simulate
during 10,000 months with condition (40, 60),
and then we obtain average total cost as 125.74
which is experimental value.

In the proposed algorithm, we initialize the
lower bound and the upper bound of reorder
point, s, as (10, 50) and the lower bound and
the upper bound of quantity, S, as (20, 70). We
start simulation with the initial value of (s,S) as
(10, 30). Also, we set the stopping condition, K,
as 10 and the incremental value of decision
variables, 4s and 48, as 1.

The Table 1

average inventory costs that are obtained when

is the results of (s,S) and

simulation is stop with changing 4¢.

Tahle 1: The reanlts of simulation hv the
proposed algorithm in the (s,S) inventory system

In the Table 1 when J4¢ is 50 we observe
that the average inventory cost converge to
12520 near to 12574 which

value,

1s experimental

and the obtained value, (39, 59), of
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decision variables, (5,S), approximately similar to
the experimental value, (40, 60). When A4¢ is
100 using the proposed algorithm we know that
(s,S) determined to (39, 59) and the obtained
average total cost, 125.62, approximately similar
to 125.74.

5. CONCLUSIONS AND FUTURE
RESEARCHES
Using the proposed algorithm, we obtain

values of decision variables that satisfy wanted
objective levels with a single run and a few
output data without replication runs. But, the
size of A4t that satisfy objective functions may
be infinitely changed through area of a given
problem and characteristics of variables, we

have to take care to select adjustable A4t

At (s,S) Average total cost

10 (29, 49) 121.05

30 (32, 52) 122.12

50 (39, 59) 125.20

100 (39, 59) 125.62
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