• Title/Summary/Keyword: Steady state error

Search Result 703, Processing Time 0.027 seconds

The estimation of thermal diffusivity using NPE method (비선형 매개변수 추정법을 이용한 열확산계수의 측정)

  • 임동주;배신철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1679-1688
    • /
    • 1990
  • The method of nonlinear parameter estimation(NPE), which is a statistical and an inverse method, is used to estimate the thermal diffusivity of the porous insulation material. In order to apply the NPE method for measuring the thermal diffusivity, and algorithm for programing suitable to IBM personal computer is established, and is studied the statistical treatment of experimental data and theory of estimation. The experimental data obtained by discrete measurement using a constant heat flux technique are used to find the boundary conditions, initial conditions, and the thermal diffusivity, and then the final values are compared with the values obtained by some different methods. The results are presented as follows:(1) NPE method is used to establish the estimation of the thermal diffusivity and compared results with experimental output shows, that this method can be applicable to define the thermal diffusivity without considering hear flux types. (2) Because of all of the temperatures obtained by the discrete measurement on each steps of time are used to estimate the thermal diffusivity. Although some error in the temperature measurements of temperature are included in estimating process, its influences on the final value are minimzed in NPE method. (3) NPE method can reduce the experimental time including the time of data collecting in a few minutes and can take smaller specimen compared with steady state method. If the tube-type furnace is used, also the adjusting time of surrounding temperature can be reduced.

Development of Digital Controller and Monitoring System for UPS Inverter (UPS 인버터의 디지털 제어기 및 모니터링 시스템의 개발)

  • Park, Jee-Ho;Hwang, Gi-Hyun;Kim, Dong-Wan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • In this paper, a new fully digital control method for UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an internal model controller. The internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the simulation and experimental results respectively.

A Study on the Use of Genetic Algorithm for Compensate a Intelligent Controller (지능제어기 보상을 위한 유전 알고리즘 이용에 관한 연구)

  • Shin, Wee-Jae;Moon, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • The fuzzy control, neural network and genetic algorithm(GA) are algorithms to make the intelligence of system more higher. In this paper, we optimized the fuzzy controller using a genetic algorithm for desire response. Also a compensated fuzzy controller has dual rules. One control rule used to decrease the overshoot and rise time occurring in transient response region and another fuzzy control rule use to decrease the steady state error and rapildy to converge at the convergence region. GA is necessary to optimal the exchange time of the two fuzzy control rule base. Fuzzy-GA controller have a process of reproduction, crossover and mutation and we experimented by hydraulic servo motor control system We could observe that compensated Fuzzy-GA controller have good control performance compare to the fuzzy control technique have two rule base table.

  • PDF

A Study on a Precision Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on Fuzzy Control (퍼지제어를 이용한 공작 기계용 오일 쿨러의 핫가스 바이패스방식 정밀 온도 제어에 관한 연구)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.205-211
    • /
    • 2013
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the working speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a oil cooler to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the oil cooler system. This paper deals with design and implementation method of fuzzy controller for obtaining precise temperature characteristic of HB oil cooler system in machine tools. The opening angle of an electronic expansion valve are controlled to keep reference value and room temperature of temperature at oil outlet. Especially, the fuzzy controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.22^{\circ}C$.

A Design of Integral Sliding Mode Suspension Controller to Reject the Disturbance Force Acting on the Suspension System in the Magnetically Levitated Train System (자기부상 열차 시스템에서 추진 장치에서 발생하는 부상 간섭력의 영향을 제거하기 위한 적분형 Sliding Mode 부상 제어기 설계)

  • Lee, Jun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1152-1160
    • /
    • 2007
  • In this paper we deal with a design of integral sliding mode controller to reject the disturbance force acting on the suspension system in the magnetically levitated system which is propelled by the linear induction motor. The control scheme comprises an integral controller which is designed for achieving zero steady-state error under step disturbances, and a sliding mode controller which is designed for enhancing robustness under plant uncertainties. A proper continuous design signal is introduced to overcome the chattering problem. The disturbance force produced by the linear motor is formularized by using a curve fitting of the experimental raw data. Computer simulations show the effectiveness of the designed integral sliding mode controller to reject the disturbance force.

An Empirical Study on the Quality Reliability of the Start-up performance of the Fixed Wing Aircraft at low temperature (고정익 항공기 저온 시동 성능의 품질 신뢰성 향상에 관한 실증적 연구)

  • Kim, DW;Jeong, SH
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.169-188
    • /
    • 2018
  • Purpose: The purpose of this study is to analyze low-temperature starting performance of the light attacker and to search and improve the aircraft system including battery and Battery Charge and Control Unit(BCCU). Methods: In order to improve the starting up performance of the light attacker at low-temp, various deficiency cause were derived and analyzed using Fault Tree Analysis method. As a result, it was confirmed there were drawbacks in the charging and discharging mechanism of the battery. The inactivation of the battery's electrolyte at low-temp and the premature termination of the battery charge were the main cause. After long error and trial, we improved these problems by improving performance of battery and optimizing the charging algorithm of BCCU. Results: It was confirmed that the problems of starting up failures were solved through the combined performance test of the battery and BCCU, the ground test using the aircraft system and the operation test conducted by Korea Airforce operating unit for 3 months in winter. Conclusion: This study showed that the improvement of quality reliability was achieved and thus the start-up performance issue of the light attacker has been resolved at low temperature. And it is expected that the design methodologies of temperature-affected electrical system of aircraft will contribute to the development of the aircraft industry in the future.

Modelling of effluent and GHGs for wastewater treatment plants using by MS Excel simulator(PKES) (MS Excel 시뮬레이터(PKES)를 이용한 하수처리장 유출수 및 온실가스 모델링)

  • Bin, Jung-In;Lee, Byung-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.735-745
    • /
    • 2014
  • This paper presents PKES(PuKyung -Excel based Simulator) for WWTPs(wastewater treatment plants) by using MS Excel and VBA(Visual Basic for Application). PKES is a user-friendly simulator for the design and optimization of the whole plant including biological and physico-chemical processes for the wastewater and sludge treatment. PKES calculates the performance under steady or dynamic state and allows changing the mathematical model by the user. Mathematical model implemented in PKES is a improved integration model based on ASM2d and ADM1 for simulation of AS(activated sludge) and AD(anaerobic digestion). Gaseous components of $N_2$, $N_2O$, $CO_2$ and $CH_4$ are added for estimation of GHGs(greenhouse gases) emission. The simulation results for comparison between PKES and Aquasim(EAWAG) showed about the same effluent concentrations. As a result of verification using by measured data of BOD, TSS, TN and TP for 2 years of operation, calculated effluent concentrations were similar to measured effluent concentrations. The values of average RMSE(root mean square error) were 1.9, 0.8, 1.6 and 0.2 mg/L for BOD, TSS, TN and TP, respectively. Total GHGs emission of WWTP calculated by PKES was 138.5 ton-$CO_2$/day and GHGs emissions of $N_2O$, $CO_2$ and $CH_4$ were calculated at 21.7, 28.9 and 87.9 ton-$CO_2$/day, respectively. GHGs emission of activated sludge was 32.5 % and that of anaerobic digestion was 67.5 %.

Performance Characteristics of Thrust Measurement System for Hot-Firing Test of Small Liquid Propulsion Engines (소형 액체 추진기관 연소 시험을 위한 추력 측정 장치의 성능 특성 연구)

  • Kim, In-Tae;Huh, Hwan-Il;Kim, Jeong-Soo;Jang, Ki-Won;Lee, Jae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.122-129
    • /
    • 2004
  • An accurate thrust measurement is one of the critical paths to the successful test and evaluation program of small liquid propulsion engines. This study describes the design factors for the development of thrust measurement system (TMS) as well as manufacturing practice of TMS hardware. We investigate characteristics of the TMS and its performance through hot-firing test of small liquid engine in a vacuum test cell which is capable of simulating 100,000 ft of altitude or higher. For performance test of TMS, we measure thrusts by changing propellant injection pressure at steady state firing mode as well as at pulse firing mode. Measured eigen frequency of the TMS is 67 Hz. Linearity test of the TMS shows good performance with less than 0.5% of linearity error.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

Application of Adaptive Control Theory to Nuclear Reactor Power Control (적응제어 기법을 이용한 원자로 출력제어)

  • Ha, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.336-343
    • /
    • 1995
  • The Self Tuning Regulator(STR) method which is an approach of adaptive control theory, is ap-plied to design the fully automatic power controller of the nonlinear reactor model. The adaptive control represent a proper approach to design the suboptimal controller for nonlinear, time-varying stochastic systems. The control system is based on a third­order linear model with unknown, time-varying parameters. The updating of the parameter estimates is achieved by the recursive extended least square method with a variable forgetting factor. Based on the estimated parameters, the output (average coolant temperature) is predicted one-step ahead. And then, a weighted one-step ahead controller is designed so that the difference between the output and the desired output is minimized and the variation of the control rod position is small. Also, an integral action is added in order to remove the steady­state error. A nonlinear M plant model was used to simulate the proposed controller of reactor power which covers a wide operating range. From the simulation result, the performances of this controller for ramp input (increase or decrease) are proved to be successful. However, for step input this controller leaves something to be desired.

  • PDF