• Title/Summary/Keyword: Steady state error

Search Result 703, Processing Time 0.025 seconds

Temperature Control of Greenhouse Using Ventilation Window Adjustments by a Fuzzy Algorithm (퍼지제어에 의한 자연환기온실의 온도제어)

  • 정태상;민영봉;문경규
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.42-49
    • /
    • 2001
  • This study was carried out to develop a fuzzy control technique of ventilation window for controlling a temperature in a greenhouse. To reduce the fuzzy variables, the inside air temperature shop was taken as one of fuzzy variables, because the inside air temperature variation of a greenhouse by ventilation at the same window aperture is affected by difference between inside and outside air temperature, outside wind speed and the wind direction. Therefore, the antecedent variables for fuzzy algorithm were used the control error and its slop, which was same value as the inside air temperature slop during the control period, and the conclusion variable was used the window aperture opening rate. Through the basic and applicative control experiment with the control period of 3 minutes the optimum ranges of fuzzy variables were decided. The control error and its slop were taken as 3 and 1.5 times compared with target error in steady state, and the window opening rate were taken as 30% of full size of the window aperture. To evaluate the developed fuzzy algorithm in which the optimized 19 rules of fuzzy production were used, the performances of fuzzy control and PID control were compared. The temperature control errors by the fuzzy control and PID control were lower than 1.3$^{\circ}C$ and 2.2$^{\circ}C$ respectively. The accumulated operating size of the window, the number of operating and the number of inverse operating for the fuzzy control were 0.4 times, 0.5 times and 0.3 times of those compared with the PID control. Therefore, the fuzzy control can operating the window more smooth and reduce the operating energy by 1/2 times of PID control.

  • PDF

The Research On the Energy Storage System Using SuperCapacitor (슈퍼커패시터를 적용한 에너지 저장시스템 설계에 관한 연구)

  • Kim, IL-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.215-222
    • /
    • 2018
  • In this paper, the research on the energy storage system adapting super-capacitor has been performed. The most advanced features compared to the conventional lead-acid battery systems is that it can obtain high power capability due to the super capacitor power characteristics. The suggested system can attain high power in short times and achieve high power quality improvements. The application areas are power quality improvement system, motor start power which requires high power during transient times. The energy conversion system consists of bi-directional converter and inverter and advantages of high speed, high power charging and discharging performances. The design steps for the two loop controller of the bi-directional inverter are suggested and verified by the experiment and manufacturing. The two loop controller design starts from linearized transfer function which is calculated from the state averaging model including state decoupling method. The current controller requirements are 20% overshoot and settling time and voltage controller are no overshoot and settling time which is 10 times longer than current controller. The design is verified from the step input response. The designed controllers have unity power factor characteristics and thus can improve the power quality of the grid. It also has fast response time and zero steady state error.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Process Modeling System of a Combined Cycle Plant for Steady State Simulation with Model Based Approach (수학적 모델링 방법에 기초한 복합발전 공정의 정상상태 모사시스템 개발)

  • Kim, Shin Hyuk;Hwang, Lee Si;Joo, Yong Jin;Lee, Sang Uk;Shon, Byung Mo;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.545-552
    • /
    • 2015
  • Process modeling and simulation is a powerful methodology to quantitatively predict the change of process variables when operating and design conditions are changed. In this study, considering drawbacks of currently used process simulator for combined cycle plants, we developed process modeling system equipped with an ease of use and flexibility for model development. For this purpose, the analysis of combined cycle processes was carried out and consequently, mathematical models and libraries were developed. Furthermore, in view of the fact that the level of the abstraction of process models depends on the purpose of simulation as well as the available data, simple and rigorous models were also developed for some important units. In use of reference combined plant, we executed process simulation using the developed modeling system and the comparison was made between the results of simulation and the reference data. Less than 1% marginal error was identified and we concluded that the modeling system can be applied for commercial combined cycle processes.

New Fuzzy Controller for High Performance of IPMSM Drive (IPMSM 드라이브의 고성능 제어를 위한 새로운 퍼지제어기)

  • 이정철;이홍균;김종관;정동화
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.199-207
    • /
    • 2003
  • This paper is proposed new fuzzy controller for high performance of interior permanent magnet synchronous motor(IPMSM) drive. New fuzzy controller take out appropriate amounts of accumulated control input according to fuzzily described situations in addition to the incremental control input calculated by conventional direct fuzzy controller The structures of the proposed controller is motivated by the problems of direct fuzzy controller. The direct controller generally give inevitable overshoot when one tries to reduce rise time of response especially when a system of order higher than one is under consideration. The undesirable characteristics of the direct fuzzy controller are caused by integrating operation of the controller, even though the Integrator itself is introduced to overcome steady state error in response. Proposed controller fuzzily clear out integrated quantities acrording to situation. This paper attempts to provide a thorough comparative insight into the behavior of IPMSM drive with direct and new fuzzy speed controller. The validity of new fuzzy speed controller is confirmed by response results for IPMSM drive system.

Measurement of Heat Release Rate by Carbon Dioxide Generation Method for Methane Fire (메탄화재의 이산화탄소 생성법에 의한 화재발열량 측정)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • The energy released by various burning material has a wide range of its magnitude and transient characteristics, the measurement of the heat release rate(HRR) has been considered as one of the most challenging issue among the parameters related to fire. This study compares the measured HRR calculated by the oxygen consumption (OC) method and the carbon dioxide generation (CDG) method using a laboratory-scale fire calorimeter. The feasibility of the CDG method is examined by analyzing the relative error. The relationship between the oxygen depletion factor and CO2 mass flow rate, which is a key parameter in HRR calculations, showed strong linearity at 6 % for the methane burner fire. The contribution of HRR by CO was less than 7% compared with the of HRR by CO2 in the CDG calculation method. The linearity of the OC and CDG methods with respect to HRR of the referenced methane burner in a quasi-steady state was less than 1%; this indicates that the CDG method can be utilized as a complementary method in heat release rate measurement.

(The Speed Control of Induction Motor using PD Controller and Neural Networks) (PD 제어기와 신경회로망을 이용한 유도전동기의 속도제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • This paper presents the implementation of the speed control system for 3 phase induction motor using PD controller and neural networks. The PD controller is used to control the motor and to train neural networks at the first time. And neural networks are widely used as controllers because of a nonlinear mapping capability, we used feedforward neural networks(FNN) in order to simply design the speed control system of the 3 phase induction motor. Neural networks are tuned online using the speed reference, actual speed measured from an encoder and control input current to motor. PD controller and neural networks are applied to the speed control system for 3 phase induction motor, are compared with PI controller through computer simulation and experiment respectively. The results are illustrated that the output of the PD controller is decreased and feedforward neural networks act main controller, and the proposed hybrid controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

Analysis of Korean Language Parsing System and Speed Improvement of Machine Learning using Feature Module (한국어 의존 관계 분석과 자질 집합 분할을 이용한 기계학습의 성능 개선)

  • Kim, Seong-Jin;Ock, Cheol-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.66-74
    • /
    • 2014
  • Recently a variety of study of Korean parsing system is carried out by many software engineers and linguists. The parsing system mainly uses the method of machine learning or symbol processing paradigm. But the parsing system using machine learning has long training time because the data of Korean sentence is very big. And the system shows the limited recognition rate because the data has self error. In this thesis we design system using feature module which can reduce training time and analyze the recognized rate each the number of training sentences and repetition times. The designed system uses the separated modules and sorted table for binary search. We use the refined 36,090 sentences which is extracted by Sejong Corpus. The training time is decreased about three hours and the comparison of recognized rate is the highest as 84.54% when 10,000 sentences is trained 50 times. When all training sentence(32,481) is trained 10 times, the recognition rate is 82.99%. As a result it is more efficient that the system is used the refined data and is repeated the training until it became the steady state.

The Performance Improvement of CMA Adaptive Equalization in 16-QAM Signal using the Coordinate Reduction (Coordinate Reduction을 이용한 16-QAM 신호의 CMA 적응 등화 성능 개선)

  • Lim, Seung-Gag;Jeong, Young-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.107-113
    • /
    • 2011
  • This paper is concerned with the CR-CMA (Coordinate Reduction-Constant Modulus Algorithm) adaptive equalization algorithm using the coordinate reduction in order to improve the convergence characteristic and residual intersymbol interference which are used as the performance index for an adaptive equalizer. The equalizer is used to reduce the distortion caused by the intersymbol interference on the wireless and the wired band-limited channel that connect the transmitting system and receiving system. The CMA is widely known as the representative algorithm for equalization. In order to transmitting the mass information with a high speed through the channels, a fast convergence speed in the equalizer performance that is able to minimize overhead needed for equalization is acquired. In this paper, we introduce the new cost function to reduce the constellation of received signal at the input stage of a equalizer. It reduce the error at the steady equalization state. By the computer simulation, we confirmed that the proposed CR-CMA algorithm has the faster convergence speed and the smaller residual intersymbole interference than the conventional CMA.

Multi-Constant Modulus Algorithm for Blind Decision Feedback Equalizer (블라인드 결정 궤환 등화기를 위한 다중 계수 알고리즘)

  • Kim, Jung-Su;Chong, Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.709-717
    • /
    • 2002
  • A new multi constant modulus algorithm (MCMA) for a blind decision feedback equalizer is proposed. In order to avoid the error propagation problem in the conventional DFE structure, Feed-Back Filter coefficients are updated only after Feed-Forward Filter coefficients are sufficiently converged to the steady state. Therefore, it has the problem of slow convergence speed characteristics. To overcome this drawback, the proposed MCMA algorithm uses not only new cost function considering the minimum distance between the received signal and the representative value containing the statistical characteristics of the transmitted signal, but also adaptive step-size according to the equalizer outputs to fast convergence speed of FBF. Simulations were carried out under the certified communication channel environment to evaluate a performance of the proposed equalizer. The simulation results show that the proposed equalizer has an improved convergence and SER performance compared with previous methods. The proposed techniques offer the possibility of practical equalization for cable modem and terrestrial HDTV broadcast (using 8-VSB or 64-QAM) applications.