DOI QR코드

DOI QR Code

Measurement of Heat Release Rate by Carbon Dioxide Generation Method for Methane Fire

메탄화재의 이산화탄소 생성법에 의한 화재발열량 측정

  • 김성찬 (경일대학교 소방방재학과)
  • Received : 2020.02.29
  • Accepted : 2020.03.27
  • Published : 2020.04.30

Abstract

The energy released by various burning material has a wide range of its magnitude and transient characteristics, the measurement of the heat release rate(HRR) has been considered as one of the most challenging issue among the parameters related to fire. This study compares the measured HRR calculated by the oxygen consumption (OC) method and the carbon dioxide generation (CDG) method using a laboratory-scale fire calorimeter. The feasibility of the CDG method is examined by analyzing the relative error. The relationship between the oxygen depletion factor and CO2 mass flow rate, which is a key parameter in HRR calculations, showed strong linearity at 6 % for the methane burner fire. The contribution of HRR by CO was less than 7% compared with the of HRR by CO2 in the CDG calculation method. The linearity of the OC and CDG methods with respect to HRR of the referenced methane burner in a quasi-steady state was less than 1%; this indicates that the CDG method can be utilized as a complementary method in heat release rate measurement.

연소상태의 가연물에서 방출되는 에너지는 비정상적인 특성과 폭넓은 크기규모를 가지기 때문에 다른 화재물리량에 비해 측정하기 어려운 문제 중의 하나로 인식된다. 본 연구는 실험실규모의 화재 발열량계에서 이산화탄소생성법과 산소소모법에 의해 계산된 측정 발열량을 비교하여 상대오차를 분석하였다. 메탄 버너화재에 대해 산소소모계수와 CO2 질량유량의 상관관계는 6% 이내에서 우수한 선형성을 보였다. CDG법의 계산에서 CO에 의한 발열량 기여분은 CO2에 의한 기여분에 비해 7% 이내로 크지 않게 나타났다. 준정상상태의 기준 버너 발열량 대비 OC법과 CDG법의 선형성은 1% 이내를 보여 발열량 측정에 있어서 CDG법은 상호 보완할 수 있는 측정수단으로 활용될 수 있다.

Keywords

References

  1. ASTM E906, "Test Method for Heat and Visible Smoke Release Rates for Materials and Products", American Society for Testing and Materials, West Conshohocken, PA (1999).
  2. ISO 17554, "Reaction to Fire tests - Mass Loss Measurement", International Standards Organization, Geneva, Switzerland (2014).
  3. C. Huggett, "Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements", Fire and Materials, Vol. 4, No. 2, pp. 61-65 (1980). https://doi.org/10.1002/fam.810040202
  4. A. Tewarson and S. D. Ogden, "Fire Behavior of polymethylmethacrylate", Combustion and Flame, Vol. 89, No. 3, pp. 237-259 (1992). https://doi.org/10.1016/0010-2180(92)90013-F
  5. OXYMAT 61, "The Oxygen Analyzer for Standard Applications", SIEMENS Manual (2001).
  6. ULTRAMAT 23, "Gas Analyzer for Measuring IR-absorbing Gases, Oxygen and Hydrogen Sulfide", SIEMENS Manual (2015).
  7. W. J. Parker, "Calculations of the Heat Release Rate by Oxygen-Consumption for Various Application", Journal of Fire Science, Vol. 2, No. 5, pp. 380-395 (1984). https://doi.org/10.1177/073490418400200505
  8. H. Biteau, T. Steinhaus, C. Schemel, A. Simeoni, G. Marlair, N. Bal and J. Torero, "Calculation Method for the Heat Release Rate of Materials of Unknown Composition", Proceedings of the 9th International Symposium on Fire Safety Science, IAFSS, pp. 1165-1176 (2008).
  9. A. Tewarson, "Generation of Heat and Chemical Compounds in Fires", SFPE Handbook of Fire Protection Engineering, 3ed. Section 3 - Chapter 4, NFPA Press, Boston (2002).
  10. R. A. Bryant and G. W. Mulholland, "A Guide to Characterizing Heat Release Rate Measurement Uncertainty for Full-Scale Fire Tests", Fire and Materials, Vol. 32, No. 3, pp. 121-139 (2008). https://doi.org/10.1002/fam.959