DOI QR코드

DOI QR Code

Process Modeling System of a Combined Cycle Plant for Steady State Simulation with Model Based Approach

수학적 모델링 방법에 기초한 복합발전 공정의 정상상태 모사시스템 개발

  • 김신혁 (한밭대학교 화학생명공학과) ;
  • 이시황 (한밭대학교 화학생명공학과) ;
  • 주용진 (한국전력공사 전력연구원) ;
  • 이상욱 (GS 건설 발전설계 Proposal 팀) ;
  • 손병모 (GS 건설 발전설계 Proposal 팀) ;
  • 오민 (한밭대학교 화학생명공학과)
  • Received : 2015.01.07
  • Accepted : 2015.02.03
  • Published : 2015.10.01

Abstract

Process modeling and simulation is a powerful methodology to quantitatively predict the change of process variables when operating and design conditions are changed. In this study, considering drawbacks of currently used process simulator for combined cycle plants, we developed process modeling system equipped with an ease of use and flexibility for model development. For this purpose, the analysis of combined cycle processes was carried out and consequently, mathematical models and libraries were developed. Furthermore, in view of the fact that the level of the abstraction of process models depends on the purpose of simulation as well as the available data, simple and rigorous models were also developed for some important units. In use of reference combined plant, we executed process simulation using the developed modeling system and the comparison was made between the results of simulation and the reference data. Less than 1% marginal error was identified and we concluded that the modeling system can be applied for commercial combined cycle processes.

복합발전 공정의 모델링 및 모사는 공정의 운전 및 설계 조건에 따른 공정변수의 변화를 정량적으로 예측하기 위한 중요한 접근방법이다. 본 연구에서는 현재 사용되는 복합발전공정의 정상상태 모사기의 단점을 보완하여, 사용자의 편의성과 개발자의 핵심기술 모델링을 가능하게 하는 공정 모델링 시스템을 개발하였다. 복합발전 공정의 주요 장치들을 분석하여 수학적 모델을 개발하였으며 이를 종합하여 모델라이브러리로 구성하였다. 또한 모사의 목적과 입수 가능한 자료에 따라 사용되는 모델의 상세도가 다르다는 점을 고려하여 주요장치에 대해 다른 상세도의 모델을 개발하였다. 복합발전 상업공정을 개발된 모델링 시스템을 사용하여 모델링과 모사를 수행하였으며 모사의 결과를 데이터자료와 비교 검증하였다. 검증의 모사결과와 자료데이터는 1% 내의 오차를 보였으며 개발된 모델링 시스템이 실제 공정에 응용될 수 있음을 보여주었다.

Keywords

References

  1. Kim, C. M., Kang, D. W. and Kim, T. S., "Performance Analysis of IGCC Gas Turbine Considering Turbine Operation Condition Change due to Modulation of Nitrogen Dilution," Trans. Korean Soc. Mech. Eng., 37(11), 1023-1029(2013). https://doi.org/10.3795/KSME-B.2013.37.11.1023
  2. Sharma, M. and Singh, O., "Parametric Evaluation of Heat Recovery Steam Generator," Heat Transfer-Asian Research, 43(8), 691-705(2014). https://doi.org/10.1002/htj.21106
  3. Park, Y. C., Lee, T. Y., Park, J. H. and Ryu H. J., "Performance and Economic Analysis of Natural Gas/Syngas Fueled 100 MWth Chemical-Looping Combustion Combined Cycle Plant," Korean Chem. Eng. Res., 47(1), 65-71(2009).
  4. Seyedan, B., Dhar, P. L., Gaur, R. R. and Bindra, G. S., "Computer Simulation of a Combined Cycle Power Plant," Heat Recoverys Ystems & CHP, 15(7), 619-630(1995). https://doi.org/10.1016/0890-4332(95)90042-X
  5. GateCycle, http://www.ge-mcs.com/en/bently-nevada-software/320-performance/1831-siweb-pl655.html.
  6. Aspen Plus, http://www.aspentech.com.
  7. PRO/II, http://software.invensys.com/products/simsci/design/pro-ii/.
  8. gPROMS, http://www.psenterprise.com/gproms/.
  9. Matlab, http://www.mathworks.com/products/matlab/.
  10. Process Engineering Division, Shell Gasifier IGCC Base CasesPED-IGCC-98-002(1998).
  11. Lee, H. J. and Lee, J. H., "Linear Model Predictive Control of an Entrained-flow Gasifier for an IGCC Power Plant," Korean Chem. Eng. Res., 52(5), 592-602(2014). https://doi.org/10.9713/kcer.2014.52.5.592
  12. Park, M. H., Kim, J. J., Kim, Y. H. and Kim C., "Conceptual Design of the Minimum Integration IGCC," Energy Eng., 9(1), 1-9(2000).
  13. Frank, P. I., David, P. D., Theodore, L. B. and Adrienne, S. L., Principles of HEAT and MASS TRANSFER, 7rd Ed., John Wiley & Sons, INC(2013).
  14. Chase, D. L. and Kehoe, P. T., GE Combined-Cycle Product Line and Performance, GE Power Systems Schenectady, NY.
  15. Shi, X. and Che, D., "Thermodynamic Analysis of an LNG Fuelled Combined Cycle Power Plant with Waste Heat Recovery and Utilization System," International Journal of Energy Research, Int. J. Energy Res., 2007(31), 975-998(2006).
  16. Multiflash, http://www.kbcat.com/infochem-software/flow-assurance-software-multiflash.
  17. Smith, J. M., Van Ness, H. C. and Abbott, M. M., Introduction to Chemical Engineering Thermodynamics, 7rd Ed., McGRaWHILL(2005).
  18. Khurmi, R. S., Steam Tables: with Mollier Diagrams in S.I. Unites, S.CHAND.
  19. Ryu, T. Y., Yang, S. M., Jang, H. M., Choi, J.B., Myung, K. C., Lee, D. Y. and Choi, S. B., "Study on Safety Design of Vertical-Type Heat Recovery Steam Generator Based on Large-Scale Analysis," Trans. Korean Soc. Mech. Eng., 36(12), 1535-1542(2012). https://doi.org/10.3795/KSME-A.2012.36.12.1535

Cited by

  1. 폴리제너레이션 성능 모사 연구 vol.28, pp.4, 2017, https://doi.org/10.7316/khnes.2017.28.4.352