Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.3.753

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule  

Jung, Jin-Woo (Division of Electronics and Electrical Engineering, Dongguk University)
Dang, Dong Quang (Division of Electronics and Electrical Engineering, Dongguk University)
Vu, Nga Thi-Thuy (Division of Electronics and Electrical Engineering, Dongguk University)
Justo, Jackson John (Division of Electronics and Electrical Engineering, Dongguk University)
Do, Ton Duc (Division of Electronics and Electrical Engineering, Dongguk University)
Choi, Han Ho (Division of Electronics and Electrical Engineering, Dongguk University)
Kim, Tae Heoung (Dept. of Electrical Engineering, Engineering Research Institute, Gyeongsang National University)
Publication Information
Journal of Power Electronics / v.15, no.3, 2015 , pp. 753-762 More about this Journal
Abstract
This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.
Keywords
Interior Permanent Magnet Synchronous Motor (IPMSM); Nonlinear Sliding Surface; Sliding Mode Controller (SMC); Sliding Mode Observer (SMO); Speed Control; System Uncertainties;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 V. I. Utkin, Sliding Modes in Control Optimization, Springer-Verlag, 1992.
2 J. Yang, J. Su, S. Li, and X. Yu, “High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach,” IEEE Trans. Ind. Inform., Vol. 10, No. 1, pp. 604-614, Feb. 2014.   DOI   ScienceOn
3 J. Yang, S. Li, and X. Yu, “Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 160-169, Jan. 2013.   DOI   ScienceOn
4 J. Yang, S. Li, J. Su, and X. Yu, “Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances,” Automatica, Vol. 49, No. 7, pp. 2287-2291, Apr. 2013.   DOI   ScienceOn
5 C. E. Castaneda, A. G. Loukianov, E. N. Sanchez, and B. Castiio-Toledo, “Discrete-time neural sliding-mode block control for a DC motor with controlled flux,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1194-1207, Feb. 2012.   DOI   ScienceOn
6 B. Veselic, B. Perunicic-Drazenovic, and C. Milosavljevic, “High-performance position control of induction motor using discrete-time sliding-mode control,” IEEE Trans. Ind. Electron., Vol. 55, No. 11, pp. 3809-3817, Nov. 2008.   DOI   ScienceOn
7 D. Fulwani, B. Bandyopadhyay, and L. Fridman, “Non-linear sliding surface: towards high performance robust control,” IET Control Theory Appl., Vol. 6, No. 2, pp. 235-242, Jan. 2012.   DOI   ScienceOn
8 F. Lin, Y. Hung, and M. Tsai, “Fault tolerant control for six-phase PMSM drive system via intelligent complementary sliding mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., Vol. 60, No. 12, pp. 5747-5762, Dec. 2013.   DOI   ScienceOn
9 V. Q. Leu, H. H. Choi, and J. W. Jung, “Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer,” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1530-1539, Mar. 2012.   DOI   ScienceOn
10 J. W. Jung, V. Q. Leu, D. Q. Dang, H. H. Choi, and T. H. Kim, “Sliding mode control of SPMSM drivers: an online gain tuning approach with unknown system parameters,” Journal of Power Electronics, Vol. 14, No. 5, pp. 980-988, Sep. 2014.   DOI   ScienceOn
11 B. M. Chen, T. H. Lee, K. Peng, and V. Venkataramanan, “Composite nonlinear feedback control for linear systems with input saturation: theory and applications,” IEEE Trans. Autom. Control, Vol. 48, No. 3, pp. 427-439, Mar. 2003.   DOI   ScienceOn
12 H. Lin, K. Y. Hwang, and B. I. Kwon, “An improved flux observer for sensorless permanent magnet synchronous motor drives with parameter identification,” J. Electr. Eng. Technol., Vol. 8, No. 3, pp. 516-523, May 2013.   DOI   ScienceOn
13 Y. A. R. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Convers., Vol. 21, No. 3, pp. 636-644, Sep. 2006.   DOI   ScienceOn
14 T. D. Do, S. Kwak, H. H. Choi, and J. W. Jung, “Suboptimal control scheme design for interior permanentmagnet synchronous motors: an SDRE-based approach,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 3020-3031, Jun. 2014.   DOI
15 D. Q. Dang, N. T. T. Vu, H. H. Choi, and J. W. Jung, “Neural-fuzzy control of interior permanent magnet synchronous motor: stability analysis and implementation,” J. Electr. Eng. Technol., Vol. 8, No. 6, pp. 1439-1450, Nov. 2013.   DOI   ScienceOn
16 S. Li and H. Gu, “Fuzzy adaptive internal model control schemes for PMSM speed-regulation system,” IEEE Trans. Ind. Informat., Vol. 8, No. 4, pp. 767-779, Nov. 2012.   DOI   ScienceOn
17 M. N. Uddin and R. S. Rebeiro, “Online efficiency optimization of a fuzzy-logic-controller-based IPMSM drive,” IEEE Trans. Ind. Appl., Vol. 47, No. 2, pp. 1043-1050 , Mar./Apr. 2011.   DOI   ScienceOn
18 M. N. Uddin and M. A. Rahman, “High-speed control of IPMSM drives using improved fuzzy logic algorithms,” IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 190-199, Feb. 2007.   DOI   ScienceOn
19 M. A. S. Khan and M. A. Rahman, “A novel neuro-wavelet-based self-tuned wavelet controller for IPM motor drives,” IEEE Trans. Ind. Appl., Vol. 46, No. 3, pp. 1194-1203, May/Jun. 2010.   DOI   ScienceOn
20 H. W. Sim, J. S. Lee, and K. B. Lee, “On-line parameter estimation of interior permanent magnet synchronous motor using an extended Kalman filter,” J. Electr. Eng. Technol., Vol. 9, No. 2, pp. 600-608, Mar. 2014.   DOI   ScienceOn
21 M. Sekour, K. Hartani, A. Draou, and A. Allali, “Sensorless fuzzy direct torque control for high performance electric vehicle with four in-wheel motors,” J. Electr. Eng. Technol., Vol. 8, No. 3, pp. 530-543, May 2013.   DOI   ScienceOn