• Title/Summary/Keyword: Steady State Performance

Search Result 1,426, Processing Time 0.029 seconds

Green Synthesis of Platinum Nanoparticles by Electroreduction of a K2PtCl6 Solid-State Precursor and Its Electrocatalytic Effects on H2O2 Reduction

  • Kim, Kyung Tae;Jin, Sung-Ho;Chang, Seung-Cheol;Park, Deog-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3835-3839
    • /
    • 2013
  • A new synthesis route for Pt nanoparticles by direct electrochemical reduction of a solid-state Pt ion precursor ($K_2PtCl_6$) is demonstrated. Solid $K_2PtCl_6$-supported polyethyleneimine (PEI) coatings on the surface of glassy carbon electrode were prepared by simple mixing of solid $K_2PtCl_6$ into a 1.0% PEI solution. The potential cycling or a constant potential in a PBS (pH 7.4) medium were applied to reduce the solid $K_2PtCl_6$ precursor. The reduction of Pt(IV) began at around -0.2 V and the reduction potential was ca. -0.4 V. A steady state current was achieved after 10 potential cycling scans, indicating that continuous formation of Pt nanoparticles by electrochemical reduction occurred for up to 10 cycles. After applying the reduction potential of -0.6 V for 300 s, Pt nanoparticles with diameters ranging from $0.02-0.5{\mu}m$ were observed, with an even distribution over the entire glassy carbon electrode surface. Characteristics of the Pt nanoparticles, including their performance in electrochemical reduction of $H_2O_2$ are examined. A distinct reduction peak observed at about -0.20 V was due to the electrocatalytic reduction of $H_2O_2$ by Pt nanoparticles. From the calibration plot, the linear range for $H_2O_2$ detection was 0.1-2.0 mM and the detection limit for $H_2O_2$ was found to be 0.05 mM.

Dimming Control of A Automotive HID Lamp Ballast Using Digital Control Method (디지털제어방식을 이용한 자동차용 고압방전등 안정기의 조광제어)

  • Lee, Jae-Hak;Kim, Yoon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.24-33
    • /
    • 2005
  • This paper presents dimming control system for automotive 35[W] metal halide discharge(MHD) lamp electronic ballast using digital control method. HID system has been becoming increasingly popular due to its superior performance(high luminous efficacy, good color rendering and long life etc.)over the conventional halogen system. However, this lamp demands a highly efficient ballast and very complex control circuitry that can control complex transient state in applying to automotive. Therefore, in this paper, digital control method for the HID lamp ballast is presented for optimal control that can adapt complex transient state, steady state and various environments. In developed dimming system, the system is designed to control the lamp output voltage step by step using microcontroller according to cds sensor. Therefore the designed dimming control system give good driving condition to diver and realize the power control effectively. The results of the proposed system is verified through various simulation results and the experiment results.

Optimal Fuzzy Filter for Nonlinear Systems with Variance Constraints (분산 제약을 갖는 비선형 시스템의 최적 퍼지 필터)

  • Noh, Sun-Young;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.549-554
    • /
    • 2012
  • In this paper, we consider the optimal fuzzy filter of nonlinear discrete-time with estimation error variance constraint. First, the Takagi and Sugeno(T-S) fuzzy model is employed to approximate the nonlinear system. Next, the error state is mean square bounded, and the steady state variance of the estimation error of each state is not more than the individual predefined value. It is shown that, the addressed problem can be carried out by solving linear matrix inequality(LMI) and some algebraic quadratic matrix inequalities. Finally, some examples are provided to illustrate the design procedure and expected performance through simulations.

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application (그라우팅에 적합한 점성을 갖는 변형률 경화 시멘트 복합재료)

  • Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • This paper presents materials and processing technique to manufacture low viscous strain-hardening cementitious composite which is suitable for structures requiring low viscosity of materials. The micromechanics and fracture mechanics tools coupled with processing techniques were adopted to achieve low viscosity of composites as well as high tensile strain capacity. Optimal volume and length of fibers and interfacial properties between fibers and matrix for composites with tensile strength of 2~3MPa were determined on the basis of the micromechanical analysis and the steady-state cracking theory. Then six mixtures were determined and the experiment was carried out to evaluate the viscosity and uniaxial tensile performance of those. From the test results, it is verified that the strain-hardening cementitious composite with low viscosity suitable for grouting applications in fresh state as well as high ductility over 1.5% in hardened state can be feasible.

A Study on the Convergence Characteristics Improvement of the Modified-Multiplication Free Adaptive Filer (변형 비적 적응 필터의 수렴 특성 개선에 관한 연구)

  • 김건호;윤달환;임제탁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.815-823
    • /
    • 1993
  • In this paper, the structure of modified multiplication-free adaptive filter(M-MADF) and convergence analysis are presented. To evaluate the performance of proposed M-MADF algorithm, fractionally spaced equalizer (FSE) is used. The input signals are quantized using DPCM and the reference signals is processed using a first-order linear prediction filter, and the outputs are processed by a conventional adaptive filter. The filter coefficients are updated using the Sign algorithm. Under the assumption that the primary and reference signals are zero mean, wide-sense stationary and Gaussian, theoretical results for the coefficient misalignment vector and its autocorrelation matrix of the filter are driven. The convergence properties of Sign. MADF and M-MADF algorithm for updating of the coefficients of a digital filter of the fractionally spaced equalizer (FSE) are investigated and compared with one another. The convergence properties are characterized by the steady state error and the convergence speed. It is shown that the convergence speed of M-MADF is almost same as Sign algorithm and is faster that MADF in the condition of same steady error. Especially it is very useful for high correlated signals.

  • PDF

Sun Sensor Aided Multiposition Alignment of Lunar Exploration Rover (달 탐사 로버의 태양 센서 보조 다중위치 정렬)

  • Cha, Jaehyuck;Heo, Sejong;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.836-843
    • /
    • 2017
  • In lunar exploration, the necessity of utilizing rover is verified by the examples of the Soviet Union and China and the similar Mars missions of the United States. In order to achieve the successful management of a lunar rover, a high precision navigation technique is required, and accordingly, high precision initial alignment is essential. Even though it is general to perform initial alignment in a steady state, a multiposition alignment technique is applied when high performance is needed. On the lunar surface, however, the performance of initial alignment decreases from that on Earth, and it cannot be improved by applying multiposition alignment method owing to certain constraints of lunar environment. In this paper, a sun sensor aided multiposition alignment technique is proposed. The measurement model for a sun vector is established, and its observability analysis is performed. The performance of the proposed algorithm is verified through computer simulations, and the results show the estimation performance is improved dramatically.

Steady-State Performance Analysis of Air Conditioner with Multi-Indoor Units (복수 실내기를 가지는 에어컨의 정상상태 성능해석)

  • Hur, Hyun;Lee, Jin Wook;Jung, Eui Guk;Kim, Byung Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.705-715
    • /
    • 2016
  • In this study, the cycle performance of an air conditioner with multi-indoor units is analyzed and simulated. The cycle performance could be predicted through the integration of mathematical formulation for these devices. The condenser pressure is obtained by an iteration process to match the mass flow rates of the compressor and the expansion valve and the evaporator pressure is determined by an iteration process, in which the suction super heat is tracing the targeted super heat. The required software was developed by system programming. the software algorithm is extended to predict the cycle performance of an air conditioner system with multi-indoor units, and then the numerical results are compared with experimental results. This mathematical model is validated from the result of experiments conducted on 8.3kW air conditioner. The errors in capacity, electronic power, and COP are found to be within 10% in general.

Experimental Study of Polymer Electrolyte Membrane Fuel Cell Performance Under Low Operating Temperatures (상온 작동 환경하에서의 고분자 전해질막 연료전지의 성능에 대한 실험적 연구)

  • Cha, Dowon;Kim, Bosung;Kim, Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.687-693
    • /
    • 2014
  • In this study, the performance characteristics of a polymer electrolyte membrane fuel cell (PEMFC) were investigated at low operating temperatures under steady-state and dynamic conditions. The performance of the PEMFC was analyzed according to the external humidifying rate and air stoichiometry. The ohmic resistance was also investigated using EIS tests. At the operating temperature of $35^{\circ}C$, voltage fluctuation occurred to a greater degree compared to that at $45^{\circ}C$. Therefore, it was found that the air stoichiometry should be higher than 2.5 for the stable operation of the fuel cell. In addition, the relative humidity of the reactant gases should be higher than 60 to reduce the ohmic resistance.

PDF-Distance Minimizing Blind Algorithm based on Delta Functions for Compensation for Complex-Channel Phase Distortions (복소 채널의 위상 왜곡 보상을 위한 델타함수 기반의 확률분포거리 최소화 블라인드 알고리듬)

  • Kim, Nam-Yong;Kang, Sung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5036-5041
    • /
    • 2010
  • This paper introduces the complex-version of an Euclidean distance minimization algorithm based on a set of delta functions. The algorithm is analyzed to be able to compensate inherently the channel phase distortion caused by inferior complex channels. Also this algorithm has a relatively small size of Gaussian kernel compared to the conventional method of using a randomly generated symbol set. This characteristic implies that the information potential between desired symbol and output is higher so that the algorithm forces output more strongly to gather close to the desired symbol. Based on 16 QAM system and phase distorted complex-channel models, mean squared error (MSE) performance and concentration performance of output symbol points are evaluated. Simulation results show that the algorithm compensates channel phase distortion effectively in constellation performance and about 5 dB enhancement in steady state MSE performance.