DOI QR코드

DOI QR Code

달 탐사 로버의 태양 센서 보조 다중위치 정렬

Sun Sensor Aided Multiposition Alignment of Lunar Exploration Rover

  • Cha, Jaehyuck (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University) ;
  • Heo, Sejong (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University) ;
  • Park, Chan-Gook (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University)
  • 투고 : 2017.06.15
  • 심사 : 2017.09.21
  • 발행 : 2017.10.01

초록

달 탐사에 있어 로버 활용의 필요성은 (구)소련과 중국의 사례와 미국의 수차례에 걸친 화성 탐사로 인해 입증되었다. 달 탐사 로버의 성공적인 운용을 위해서는 높은 정밀도의 항법 성능이 요구되며, 이를 위해서는 높은 정밀도의 초기 정렬이 필수적이다. 일반적으로는 단일 위치 정렬을 수행하나, 높은 수준의 초기 정렬 성능이 필요한 경우 다중위치 정렬을 수행한다. 하지만, 달 환경의 제약으로 인해 달 탐사 로버의 초기 정렬 성능은 지구환경에 비하여 떨어지게 되며, 이는 다중위치 정렬을 수행하여도 극복할 수 없다. 따라서 본 논문에서는 태양 센서를 보조로 활용한 달 환경에서의 다중위치 정렬 기법을 제안한다. 태양 벡터의 측정치 모델을 구성하고, 이에 대한 가관측성 분석을 수행하였다. 컴퓨터 시뮬레이션을 통해 제안한 알고리즘의 성능을 분석하였고, 그 결과 초기 자세 추정 성능이 크게 향상되었음을 확인하였다.

In lunar exploration, the necessity of utilizing rover is verified by the examples of the Soviet Union and China and the similar Mars missions of the United States. In order to achieve the successful management of a lunar rover, a high precision navigation technique is required, and accordingly, high precision initial alignment is essential. Even though it is general to perform initial alignment in a steady state, a multiposition alignment technique is applied when high performance is needed. On the lunar surface, however, the performance of initial alignment decreases from that on Earth, and it cannot be improved by applying multiposition alignment method owing to certain constraints of lunar environment. In this paper, a sun sensor aided multiposition alignment technique is proposed. The measurement model for a sun vector is established, and its observability analysis is performed. The performance of the proposed algorithm is verified through computer simulations, and the results show the estimation performance is improved dramatically.

키워드

참고문헌

  1. Ahn, S. M., Lee, Y. G., Kim, S. P., Kim, T. S., and Moon, S. M., "Space Rover Development and Domestic Technology," Current Industrial and Technological Trends in Aerospace, Vol. 6, No. 1, 2008, pp. 27-34.
  2. Lee, W. B., Ju, G.-H. Choi, G. H., and Sim, E. S., "Development Trends of Space Robots,", Current Industrial and Technological Trends in Aerospace, Vol. 9, No. 2, 2011, pp. 158-175.
  3. Xiao, L., "China's touch on the Moon," Nature Geoscience, Vol. 7, No. 6, 2014, pp. 391-392. https://doi.org/10.1038/ngeo2175
  4. Vasavada, A. R., et al., "Overview of the Mars Science Laboratory mission: Bradbury landing to Yellowknife Bay and beyond," Journal of Geophysical Research: Planets, Vol. 119, No. 6, 2014, pp. 1134-1161. https://doi.org/10.1002/2014JE004622
  5. Pingyuan, C., Fuzhan, Y., and Hutao, C., "Attitude and position determination scheme of lunar rovers basing on the celestial vectors observation," in 2007 IEEE International Conference on Integration Technology, March 2007, pp. 538-543.
  6. Ning, X., Liu, L., Fang, J., and Wu, W., "Initial position and attitude determination of lunar rovers by INS/CNS integration," Aerospace Science and Technology, Vol. 30, No. 1, 2013, pp. 323-332. https://doi.org/10.1016/j.ast.2013.08.017
  7. Lee, J. G., Park, C. G., and Park, H. W., "Multiposition alignment of strapdown inertial navigation system." IEEE Transactions on Aerospace and Electronic systems, Vol. 29, No. 4, 1993, pp. 1323-1328. https://doi.org/10.1109/7.259535
  8. Yang, P., Xie, L., and Liu, J., "Simultaneous celestial positioning and orientation for the lunar rover," Aerospace Science and Technology, Vol. 34, 2014, pp. 45-54. https://doi.org/10.1016/j.ast.2011.07.003
  9. Ali, K., S., et al., "Attitude and position estimation on the mars exploration rovers," in 2005 IEEE International Conference on Systems, Man and Cybernetics, October 2005, pp. 20-27.
  10. Park, C. G., Kim, K. J., Park, H. W., and Lee, J. G., "Development of an Initial Coarse Alignment Algorithm for Strapdown Inertial Navigation System," Journal of Institute of Control, Robotics and Systems, Vol. 4, No. 5, 1998, pp. 674-679.