• Title/Summary/Keyword: Stator resistance estimation

Search Result 72, Processing Time 0.029 seconds

Estimation of Stator Resistance by Kalman Filter (칼만 필터를 이용한 전동기의 고정자 저항값 검출 방법)

  • Hwang, Sang-Jin;Shin, Dong-Cheol;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.493-494
    • /
    • 2018
  • 전동기 제어에 있어서, 전동기의 상수 추정이 필요한 경우가 있다. 예를 들면 고정자 자속기준 벡터제어시에는 고정자 저항의 정보가 필요하다. 본 논문에서는 전동기의 고정자 저항값을 검출 기법을 제안한다. 데드타임의 영향을 제거하기 위하여, 차동 성분의 전압, 전류값을 사용하며, 측정 노이즈 둥에 따른 오차를 저감시키기 위해 Kalman Filter 알고리즘을 적용한다. 시뮬레이션을 통해 알고리즘의 타당성을 보인다.

  • PDF

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

Sensorless Control of Induction Motor Drives Using an Improved MRAS Observer

  • Kandoussi, Zineb;Boulghasoul, Zakaria;Elbacha, Abdelhadi;Tajer, Abdelouahed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1456-1470
    • /
    • 2017
  • This paper presents sensorless vector control of induction motor drives with an improved model reference adaptive system observer for rotor speed estimation and parameters identification from measured stator currents, stator voltages and estimated rotor fluxes. The aim of the proposed sensorless control method is to compensate simultaneously stator resistance and rotor time constant variations which are subject of large changes during operation. PI controllers have been used in the model reference adaptive system adaptation mechanism and in the closed loops of speed and currents regulation. The stability of the proposed observer is proved by the Lyapunov's theorem and its feasibility is verified by experimentation. The experimental results are obtained with an 1 kW induction motor using Matlab/Simulink and a dSPACE system with DS1104 controller board showing the effectiveness of the proposed approach in terms of dynamic performance.

SIMULTANEOUS SPEED AND ROTOR TIME CONSTANT IDENTIFICATION OF AN INDUCTION MOTOR DRIVE BASED ON THE MODEL REFERENCE ADAPTIVE SYSTEM COMBINED WITH A FUZZY RESISTANCE ESTIMATOR

  • Soltani, Jafar;Mizaeian, Behzad
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.11-16
    • /
    • 1998
  • In this paper, simultaneous estimation of rotor speed and time constant for a voltage source inverter (VSI) fed induction motor drive are disccussed. The theory is based on the Model Reference Adaptive System (MRAS). The identifier executes Simultaneous rotor speed and time constant so that vector control of the induction may be achieved in the rotor-flux oriented reference frame. Furthermore, to eliminate the offset error caused by the change in the stator resistance, a fuzzy resistance regulator is also designed which operates in parallel with the rotor speed and time constant identifier

  • PDF

A technology State of Accelerating Degradation and Life Estimation on the Traction Motor for Railway Rolling Stock (철도차량 견인전동기의 가속열화수명평가 기술현황)

  • Wang, Jong-Bae;Kim, Ki-Jun;Choi, Young-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.25-28
    • /
    • 2000
  • In this paper, the technology for accelerating degradation & life estimation on the traction motor was introduced with the stator form-winding sample coils of the 200 Class insulation system The accelerative degradation was performed in 10 cycles, which were composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of $20{\sim}160^{\circ}C$. Relationship between degradation conditions and diagnosis results were analyzed to find an dominative degradation factor at the end-life point

  • PDF

Condition Diagnosis by the Complex Accelerating Degradation for fault Prediction & estimation of reliability on the traction motor - Insulation Resistance & Polarization Index Properties (견인전동기의 고장예측 및 신뢰성 평가를 위한 복합가속열화 상태진단 - 절연저항 및 성극지수 특성 연구)

  • Wang, Jong-Bae;Byun, Yoon-Sub;Baek, Jong-Hyen;Park, Hyun-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1374-1376
    • /
    • 2000
  • In this paper, sample coils for stator form-wound winding of traction motor were tested by the accelerative thermal degradation, which composed of heat, vibration, moisture and overvoltage applying. Reliability and expected life were evaluated on the insulation system for 200 class traction motor. After aging of 10 cycles, insulation resistance and PI properties were investigated as diagnosis tests in the range of $20{\sim}160^{\circ}C$. Analysis of polarization properties was performed on the base of do current-time change.

  • PDF

Fault Prediction & Reliability Estimation of the Traction Motor by the Complex Accelerating Degradation and Condition Diagnosis (견인전동기의 복합가속열화 상태진단에 의한 고장예측 및 신뢰성 평가)

  • 왕종배;김명룡
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.763-766
    • /
    • 2000
  • In this paper, stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the 200 Class insulation system of traction motors. The complex accelerative degradation was performed by periods during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of 20∼160$^{\circ}C$. Relationship among condition diagnosis test was analyzed to find an dominative degradation factor and an insulation state at end-life point.

  • PDF

A Mechanical Sensorless Vector-Controlled Induction Motor System with Parameter Identification by the Aid of Image Processor

  • Tsuji Mineo;Chen Shuo;Motoo Tatsunori;Kawabe Yuki;Hamasaki Shin-ichi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.350-357
    • /
    • 2005
  • This paper presents a mechanical sensorless vector-controlled system with parameter identification by the aid of image processor. Based on the flux observer and the model reference adaptive system method, the proposed sensorless system includes rotor speed estimation and stator resistance identification using flux errors. Since the mathematical model of this system is constructed in a synchronously rotating reference frame, a linear model is easily derived for analyzing the system stability, including motor operating state and parameter variations. Because it is difficult to identify rotor resistance simultaneously while estimating rotor speed, a low-accuracy image processor is used to measure the mechanical axis position for calculating the rotor speed at a steady-state operation. The rotor resistance is identified by the error between the estimated speed using the estimated flux and the calculated speed using the image processor. Finally, the validity of this proposed system has been proven through experimentation.

Transient Characteristics of Sensorless Vector Control of Induction Motor using Speed Observer (속도 Observer를 이용한 유도전동기 센서리스 벡터제어의 과도특성)

  • 이수원;전칠환;이성룡
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.808-811
    • /
    • 2002
  • The stability for a speed sensorless vector control of an induction machine has been studied. These studies show that the sensorless control is apt to be more unstable than the control with sensor on the variation for stator resistance, rotor resistance and system parameters of the machine. First, this paper investigates the speed characteristics when the inertia, J, changes and the rotor resistance, R$_{r}$ changes respectively for a step change of a speed reference, $\omega$. Then, the new speed estimation algorithms with no effects on the parameters variation of the machine and the system is proposed. The proposed method is to implement the observer using voltage, current and constant of the machine. The results are verified by simulation.

  • PDF

Speed and Position Estimation of IPMSM Drive using MRAS-NN (MRAS-NN을 이용한 IPMSM 드라이브의 속도와 위치 추정)

  • Lee Hong-Gyun;Lee Jung-Chul;Jung Taek-Gi;Lee Young-Sil;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.182-185
    • /
    • 2003
  • This paper combines the adaption of MRAS with the ability of NN for better modeling of nonlinear systen It presents an MRAS using an NN in the adaption mechanism. The technique is applied to a IPMSM drive. The torque constant and stator resistance variations on the speed and position estimations over a wide speed range has been studied. The NN estimators are able to track the varying parameter of different speeds with consistent performance. The validity of the proposed estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF