• Title/Summary/Keyword: Stator end winding

Search Result 37, Processing Time 0.025 seconds

Analysis of Off-Line and On-Line Partial Discharge in High Voltage Motor Stator Windings

  • Kim, Hee-Dong;Kong, Tae-Sik;Lee, Sang-Kil;Kim, Beom-Soo;Kim, Doo-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1086-1092
    • /
    • 2015
  • The off-line and on-line partial discharge (PD) in the stator winding of three high-voltage (HV) motors (1,400 HP, 6.6 kV) is measured and analyzed in this paper. The off-line PD is measured at high values between 24,300 ~ 36,100 pC after 18 years of motor operation. Spare replacement motors were not available for testing the degree of deterioration of the stator windings in standstill status. Therefore, on-line periodic analysis was conducted to monitor the trend of PD after installing a ceramic sensor (110 pF, 6.6 kV) in the terminal box for each phase of each motor. In the stator winding of the No.1 and No.2 HV motors, which showed high magnitudes of off-line PD and low magnitudes of on-line PD, defects are expected to appear in the neutral end of the winding. On the contrary, in the stator windings of the No.3 HV motor, which exhibits high off-line and on-line PD magnitude, defects are expected to appear in the terminal end of the winding where a voltage close to the phase voltage is applied.

Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.369-374
    • /
    • 2011
  • An induction motor operated with high voltage source generally generates high current in starting mode and has a long transient time after being started. This large and sustaining starting current causes the end windings of the stator to have excessive electromagnetic force. This force is the source of vibration and has a negative and serious influence on the insulation of end windings. Therefore, designing the end winding part with an appropriate support system is needed. To design the support ring enclosing the end windings, we analyze the distribution of electromagnetic force on the end windings by applying the Biot-Savart's law and the 3D finite element method (FEM), and comparing two simulation methods. Finally, we verify the safety of the support structure of the end winding part using stress analysis, which is analyzed with the electromagnetic forces from the 3D FEM simulation.

Analysis of Insulation Condition in Traction Motor Stator Windings (견인전동기 고정자 권선의 절연상태 분석)

  • Kim, Hee-Dong;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.631-635
    • /
    • 2007
  • Diagnostic, surge and ac breakdown tests are widely used to evaluate the insulation condition of stator winding in traction motor. Diagnostic test included ac current, tan delta and maximum partial discharge. The result of diagnostic test indicates that five kinds of stator windings are good condition. Surge test was peformed to confirm the healthy of turn insulation in stator windings. This test is very easy to detect the turn insulation failure between normal and defect stator windings. After completing the diagnostic test, ac breakdown test has conducted gradually increasing ac voltage, until the stator winding punctured. No. 5 stator windings failed near rated voltage of 18.9 kV The breakdown voltage of No. 1 stator windings was 13.0 kV The ac breakdown voltage of normal winding is about 1.45 times higher than that of defect windings. The failure was located in a line-end coil at the exit from the core slot.

Analysis of the Insulation aging for the stator winding (고정자권선의 절연열화 특성분석)

  • Oh, Bong-Keun;Choi, Kyo-Nam;Han, Chang-Dong;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.23-24
    • /
    • 2006
  • Stator winding of hydro generator is gradually deteriorated by multi-stress and steady degradation of insulation results in insulation breakdown. The region where insulation breakdown occurs in stator winding is part where the multi-stress causes the defect of insulation material and electrical stress has been concentrated. Therefore, we judged locations of insulation breakdown to be varied according to various stress factors in service. In this paper, we drew the stator winding of hydro generators which has run for a long time and separated it into 3 parts(central part, end winding part, drawing part) according to the positions laid on the core. We performed electrical and thermal stress on these specimens for 1000 hrs under the same condition, measured the condition regularlyand analyzed the insulation status of each winding by performing partial discharge test. In addition, we analyzed the trend of partial discharge concerning specimens that caused the insulation breakdown during aging.

  • PDF

A Study on the Partial Discharge Wave Propagation along Stator Winding (회전기 권선의 펄스 전송특성 연구)

  • Kang, Dong-Sik;Sim, Woo-Yong;Hwang, Don-Ha;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.738-740
    • /
    • 2003
  • A lot of R&D on the diagnosis of stator winding insulation for large rotating machines has been carried out since the 1970s. The on-line partial discharge measurement has proved to be an effective technique in the evaluation of the state of stator insulation in high voltage rotating machines. It is well known that if the discharge pulses propagate through the winding conductor, they are attenuated and delayed. In the present study, to investigate the attenuation and the time delay of discharge pulses through the winding conductor, a series of tests were conducted using a model coils and slot. Thus it could be concluded that while the high frequency pulse propagates in radiation or end-winding coupling modes, the low frequency one does in a series mode through the coil conductor.

  • PDF

A study on the Analysis of Insulation Aging for Generator stator windings (수력발전기 고정자권선의 절연열화 분석)

  • Byun, D.G.;Oh, B.K.;Kang, D.S.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2072-2074
    • /
    • 2005
  • This test was performed to assess the insulation condition of the stator winding of 3.45kV hydro generator in insulation deterioration condition which was due to long service period(30years) since installed We extracted 12 stator wingdings from the hydro generator core, cut the stator windings into three parts(Middle winding part, slot winding part, end wingding part), and evaluated the insulation condition to know the deterioration condition of each parts. This insulation diagnostic tests include AC current, dissipation factor, and partial discharg test.

  • PDF

Evaluation of On-Line Partial Discharge Measurement Techniques on Hydro-Generator (수력 발전기의 운전중 부분방전 측정기법에 대한 신뢰성 평가)

  • Hwang, D.H.;Kim, J.B.;Kim, Y.J.;Park, M.S.;Kim, T.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1526-1529
    • /
    • 1994
  • In hydro-generator, a groundwall insulation of stator windings gradually deteriorates due to mechanical, thermal, electrical and environmental stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the end winding, all of which can lead to stator insulation failures. Conventionally, off-line tests such as partial discharge measurement, DC/AC current test and ${\Delta}tan{\delta}$ test has been used for estimation of winding condition. However, off-line test requires large power supply and generator outage. In addition, major cause of insulation problems such as loose wedges and slot discharges may not be found with off-line diagnoses. This paper describes the on-line partial discharge measurement techniques in the generator stator windings. The experimental results from the UIAM #1 hydro-generator confirms a optimistic application of on-line generator diagnosis method as a reliable tool for evaluation of winding condition.

  • PDF

Stator Insulation Quality Assessment for High Voltage Motors Based on Probability Distributions

  • Kim, Hee-Dong;Kim, Chung-Hyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.571-575
    • /
    • 2008
  • Stator insulation quality assessment for high voltage motors is a major issue for the reliable maintenance of industrial and power plants. To assess the condition of stator insulation, nondestructive tests were performed on the sixty coil groups of twelve motors. After completing the nondestructive tests, the AC voltage applied to the stator winding was gradually increased until insulation failure in order to obtain the breakdown voltage. The stator winding of each motor was classified into five coil groups; one group with healthy insulation and four groups with four different types of artificial defects. To analyze the breakdown voltage statistically, Weibull distribution was employed for the tests on the fifty coil groups of ten motors. The 50th percentile values of the measured breakdown voltages based on the statistical data of the five coil groups of ten motors were 26.1kV, 25.0kV, 24.4kV, 26.7kV and 30.5kV, respectively. Almost all of the failures were located in the line-end coil at the exit of the core slot. The breakdown voltages and the types of defects showed strong relation to the stator insulation tests such as in the case of dissipation factor and ac current. It is shown that the condition of the motor insulation can be determined from the relationship between the probability of failure and the type of defect.

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

A Study of The Deterioration Characteristics due to Heat Cycle of Generator Stator Windings (발전기 고정자권선의 히트사이클에 의한 열화특성에 관한 연구)

  • Kim, H.G.;Kim, T.S.;Park, M.S.;Park, C.H.;Song, U.C.;Park, Y.G.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.379-381
    • /
    • 1995
  • Many generating stations in korea are 25 years or more old, and are nearing the end of their planned life. Financial conditions and Site, Environment problems have made approval for construction of new stations increasingly difficult, and extending the life of an existing older plant may be a palatable alternative. Therefore, To determine whether generator rewinds are necessary to achieve an extended life, and Methods are required to estimate the proable remaining life of existing winding, here, We are going to estimate insolation condition through Nondestructive diagonostic test and Aging history tests of generator Stator winding and winding conditions through deterioration characteristics due to Heat cycle.

  • PDF