경쟁적인 시장에서 살아남기 위해서는 공장의 공정제어를 정확하게 하는 것이 필수적이다. SPC(Statistical Process Control) 시스템은 품질 향상의 욕구를 충족시키기 위해 광범위하게 사용되어지고 있다. 하지만 대부분의 기존 상업제품들은 유연성이 떨어지고, 반자동적으로 운영되며, 다른 툴과의 접목에 어려움이 있다. 본 논문이 제안하는 rSPC(Real-Time SPC) 시스템은 웹을 기반으로 하고, XML을 입력/출력 프로토콜로 이용한다. 또한 강력한 그래픽 표현기능과 효율적인 파일 시스템으로 실시간 제어를 가능하게 한다. 새로운 SPC시스템은 어떤 생산체제에도 사용 가능하지만, 특히 반도체, TFT/LCD 산업에 최적화되어 있다. 시스템의 구현은 C++과 COM/DCOM을 사용하며, 기존의 제품보다 향상된 성능을 보인다.
There are two approaches to process control. The one is engineering process control(EPC) which is one of the techniques very widely used in the process industry and based on control theory which aims at keeping the process on target using manipulating variable. The other is statistical process control(SPC) whose main purpose is to look for assignable causes(variability) in the process. To design an integrated or combined scheme of SPC and EPC is gaining recognition in the process experiences for hybrid industry. This paper aims to investigate recent study concerned on the integration of SPC and EPC. First, we consider the difference between SPC and EPC in simple terms and review various models of EPC for integration including evaluation of previous study. Finally, we suggest some prospective research area concerned on the integration of SPC and EPC.
Vibration-based fault detection and condition monitoring of rotating machinery, using statistical process control (SPC) combined with statistical pattern recognition methodology, has been widely investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many feature-based SPC methods have been introduced to tackle this deficiency, most methods require a parametric distributional assumption that restricts their feasibility to specific problems of process control, and thus limit their application. This study proposes a nonparametric multivariate control chart method, based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the parametric assumption in existing SPC methods. The presented approach takes advantage of multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We calculate Hotelling's $T^2$-type monitoring statistic using MWS, which has enough damage-discrimination ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without any distributional assumption. Numerical simulations demonstrate the performance of the proposed control charting method, under various damage-level scenarios for a bearing system.
Statistical process control (SPC) is a powerful technique for monitoring, managing, analysing and improving the process performance. However, its has limitations such as lack of engineering, statistical skill and training, and lesser importance of activity. To solve the problems, this study proposes an intelligent SPC system using specified agents which are derived through analysis and evaluation of the SPC activities. The activities investigated by the relevant researches are categorized as collection, process analysis, diagnosis, detection, cause analysis and rule generation. Also, the evaluation criteria are established as feasibility of automation, frequency, level and time. The requirements of the agent functions are derived by the evaluation, and the types of customized agents are as data collection, store, analysis, diagnosis, monitoring, alarm and reporting. A prototype SPC system represents that the functions of the proposed agents are successfully validated.
Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for process quality improvement. SPC reduces process variability by detecting and eliminating special causes of process variation, while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been need for an integrated process control (IPC) procedure which combines the two strategies. This article considers a scheme that simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process disturbance model under consideration is an IMA(1,1) model with a location shift. The EPC part of the scheme adjusts the process, while the SPC part of the scheme detects the occurrence of a special cause. For adjusting the process repeated adjustment is applied by compensating the predicted deviation from target. For detecting special causes the two kinds of exponentially weighted moving average (EWMA) control chart are applied to the observed deviations: One for detecting location shift and the other for detecting increment of variability. It was assumed that the adjustment of the process under the presence of a special cause may change any of the process parameters as well as the system gain. The effectiveness of the IPC scheme is evaluated in the context of the average cost per unit time (ACU) during the operation of the scheme. One major objective of this article is to investigate the effects of the process parameters to the ACU. Another major objective is to give a practical guide for the efficient selection of the parameters of the two EWMA control charts.
The purpose of this study was to analyze the results from statistical process control (SPC) to recommend upper and lower control limits for planning parameters based on delivery quality assurance (DQA) results and establish our institutional guidelines regarding planning parameters for helical tomotherapy (HT). A total of 53 brain, 41 head and neck (H & N), and 51 pelvis cases who had passing or failing DQA measurements were selected. The absolute point dose difference (DD) and the global gamma passing rate (GPR) for all patients were analyzed. Control charts were used to evaluate upper and lower control limits (UCL and LCL) for all assessed treatment planning parameters. Treatment planning parameters were analyzed to provide its range for DQA pass cases. We confirmed that the probability of DQA failure was higher when the proportion of leaf open time (LOT) below 100 ms was greater than 30%. LOT and gantry period (GP) were significant predictor for DQA failure using the SPC method. We investigated the availability of the SPC statistic method to establish the local planning guideline based on DQA results for HT system. The guideline of each planning parameter in HT may assist in the prediction of DQA failure using the SPC statistic method in the future.
The evolution of semiconductor manufacturing technology has accelerated the reduction of device dimensions and the increase of integrated circuit density. In order to improve yield within a short turn around time and maintain it at high level, a system that can rapidly determine problematic processing steps is needed. The statistical process control detects abnormal process variation of key parameters. Expert systems in SPC can serve as a valuable tool to automate the analysis and interpretation of control charts. A set of IF-THEN rules was used to formalize knowledge base of special causes. This research proposes a strategy to apply expert system to SPC in semiconductor manufacturing. In analysis, the expert system accomplishes the instability detection of process parameter, In diagnosis, an engineer is supported by process analyzer program. An example has been used to demonstrate the expert system and the process analyzer.
Portfolio management deals with decision making on 'when' and 'how' to revise an existing portfolio. In this paper, we show that a classical statistical process control (SPC) chart for normal data, a wellestablished tool in quality engineering, can effectively be used for signaling times for revising a portfolio. Noting that the day-to-day performance of a portfolio may be auto-correlated, we use the exponentially weighted moving average center-line chart to develop an automatic portfolio management procedure. The portfolio management procedure is extensively tested on historical data of equities traded in the Korea Exchange (KRX), the American Stock Exchange (AMEX), and the New York Stock Exchange (NYSE). In comparison with the performances of the KOSPI, XAX, and NYA indices during the same time periods, results from these experiments show that SPC chart-based portfolio revision presents itself a convenient and reliable method for optimally managing portfolios.
SPC is the quality improvement technique of gathering since Motorola of U.S.A. have used SPC technique as a statistical process control method for promoting 6-sigma quality improvement strategy in 1988. In Korea, small and medium-sized enterprises are needed building of a system for statistical production control . In the present study, the methods of building SPC system with a moderate cost using a graphic programs of easy-to-use and high flexibility for small and medium-sized enterprises were inquired. The SPC system which enables statistic marking (maximum, minimum, mean, standard deviation, process capability index) and graph marking (X-Y coordinates and histogram) using LabVIEW 5.0, the graphic program by National Instrument Co., Ltd. was implemented in this study.
Short runs where it is neither possible nor practical to obtain sufficient subgroups to estimate accurately the control limit are common in modem business environments. In this study, the standardized control chart, Hillier's exact method, Q chart, EWMA(Exponentially Weighted Moving Average) chart for Q statistics and EWMA chart for mean and absolute deviation among many SPC(Statistical Process Control) techniques for short runs have been reviewed and advantages and disadvantages of these techniques are discussed. The simulation experiments to compare performances of these variable charts for process mean and variations are conducted for combination of subgroup size, scale and timing of shifts of process mean an/or standard deviation. Based upon simulation results, some guidelines for practitioners to choose short run SPC techniques are recommended.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.