• 제목/요약/키워드: Statistical pattern recognition technology

검색결과 34건 처리시간 0.028초

자율 감지 및 확률론적 신경망 기반 패턴 인식을 이용한 배관 구조물 손상 진단 기법 (Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition)

  • 이창길;박웅기;박승희
    • 비파괴검사학회지
    • /
    • 제31권4호
    • /
    • pp.351-359
    • /
    • 2011
  • 최근 토목, 기계 및 항공 분야에서 구조물의 안전성 및 적정 성능 수준 확보를 위하여 구조물의 결함 및 노후화에 의한 성능저하 등을 상시적으로 모니터링하기 위한 관심이 높아지고 있다. 실제 구조물에서는 내부 미세 균열에서부터 국부 좌굴, 볼트 풀림, 피로 균열 등과 같이 다양한 형태의 손상이 복합적으로 발생 가능한데, 복합 손상을 단일 모드 계측 시스템으로부터 진단하기는 매우 어렵다. 따라서 본 연구에서는 이러한 복합 손상을 효율적으로 진단하기 위하여 선행 연구에서 제안된 압전센서를 이용한 자가 계측 회로 기반의 다중 모드 계측 시스템을 적용하였다. 자가 계측 회로 기반 다중 모드 계측 시스템은 크게 두 가지 형태의 신호를 계측한다. 첫 번째 모드는 임피던스 계측으로부터 특정 주파수 대역의 구조 응답을 계측하며, 두 번째 모드는 유도 초음파 계측으로부터 단일 중심 주파수에 해당하는 구조 응답을 계측한다. 복합 손상을 손상 유형별로 분류하기 위하여 E/M 임피던스와 유도 초음파의 계측으로부터 추출한 특성을 이용하여 2차원 손상지수를 계산하고 이를 지도학습 기반 패턴인식 기법 중 확률론적 신경망 기법에 적용한다. 제안된 기법의 적용성 검토를 배관 구조물에 인위적으로 다중 손상을 생성시켜 실험을 수행하였다.

주파수 영역의 통계적 특징과 인공신경망을 이용한 기계가공의 사운드 모니터링 시스템 (Sound Monitoring System of Machining using the Statistical Features of Frequency Domain and Artificial Neural Network)

  • 이경민;칼렙;이석환;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.837-848
    • /
    • 2018
  • Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.

한국어 시각단어재인에서 의미 이웃크기 효과 (The Effect of Semantic Neighborhood Density in Korean Visual Word Recognition)

  • 권유안;남기춘
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2007년도 한국음성과학회 공동학술대회 발표논문집
    • /
    • pp.173-175
    • /
    • 2007
  • The lexical decision task (LDT) commonly postulates the activation of semantic level. However, there are few studies for the feedback effect from semantic level. The purpose of the present study is to investigate whether the feedback effect from semantic level is facilitatory or inhibitory in Korean LDT. In Experiment 1, we manipulated the number of phonological syllable neighbors (PSN) and the number of semantic neighbors (SEN) orthogonally while orthographic syllable neighbor (OSN) is dense. In the results, the significant facilitatory effect was shown in words with many SEN. In Experiment 2, we examined same conditions as Experiment 1 but OSN was sparse. Although the similar lexical decision latency pattern was shown, there was no statistical significance. These results can be explained by the feedback activation from semantic level. If a target has many SENs and many PSNs, it receives more feedback activation from semantic level than a target with few SENs and PSNs.

  • PDF

전문가시스템을 기반으로 한 통합기계상태진단 알고리즘의 구현(I) (Implementation of an Integrated Machine Condition Monitoring Algorithm Based on an Expert System)

  • 장래혁;윤의성;공호성;최동훈
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.117-126
    • /
    • 2002
  • Abstract - An integrated condition monitoring algorithm based on an expert system was implemented in this work in order to monitor effectively the machine conditions. The knowledge base was consisted of numeric data which meant the posterior probability of each measurement parameter for the representative machine failures. Also the inference engine was constructed as a series of statistical process, where the probable machine fault was inferred by a mapping technology of pattern recognition. The proposed algorithm was, through the user interface, applied for an air compressor system where the temperature, vibration and wear properties were measured simultaneously. The result of the case study was found fairly satisfactory in the diagnosis of the machine condition since the predicted result was well correlated to the machine fault occurred.

컬러와 패턴을 이용한 텍스타일 영상에서의 감정인식 시스템 (Emotion Recognition Using Color and Pattern in Textile Images)

  • 신윤희;김영래;김은이
    • 전자공학회논문지CI
    • /
    • 제45권6호
    • /
    • pp.154-161
    • /
    • 2008
  • 본 논문에서는 컬러와 패턴 정보를 이용하여 텍스타일 영상에 포함된 감성을 자동으로 인식할 수 있는 방법을 제안한다. 이때, 감성을 표현하기 위해 고바야시의 10가지 감성 그룹 - {romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modern}- 을 이용한다. 제안된 시스템은 특징 추출과 분류로 구성된다. 특징 추출 단계에서는 주관적인 감성을 물리적인 영상 특징으로 표현하기 위해 텍스타일을 구성하는 대표 컬러와 패턴을 추출 한다. 이 때 대표 컬러를 추출하기 위해서 양자화 기법을 이용하고, 패턴정보를 표현하기 위해서는 웨이블릿 변환 후의 통계적인 정보를 이용한다 추출된 컬러와 패턴 특징은 신경망을 이용한 분류기의 입력으로 사용되고, 분류기를 통해 입력 텍스타일이 임의의 감성을 가지는지 여부가 결정된다. 제안된 감성인식 방법의 효율성을 증명하기 위해서 인위적인 도메인, 패션 도메인, 인테리어 도메인에서 얻어진 389장의 텍스타일 영상에서 실험하였다. 다양한 도메인의 영상에 대해 사용된 결과 제안된 방법은 100%의 정확도와 99%의 재현율을 보였다. 이러한 실험 결과는 제안된 감성인식 방법이 다양한 텍스타일 관련 산업분야에 일반화되어 사용될 수 있음을 보여주었다.

영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구 (A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification)

  • 문수진;이의철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권10호
    • /
    • pp.63-70
    • /
    • 2018
  • 영상을 이용한 생체 신호 측정 기술이 발전하고 있으며, 특히 생명 유지를 위한 호흡 신호 측정기술 연구가 지속적으로 진행되고 있다. 기존 기술은 사람의 몸에서 방출하는 열을 측정하는 열화상 카메라를 통하여 호흡 신호를 측정하였다. 또한, 실시간으로 사람의 흉부 움직임을 분석하여 호흡률을 측정하는 연구도 진행되었다. 하지만, 적외선 열화상 영상을 이용하여 영상 처리를 하는 것은 외부 환경 요인으로 인해 호흡 기관의 탐색이 어려울 수 있으며, 이에 따라 호흡률 측정의 정확도가 떨어지는 문제들이 발생했다. 본 연구에서는 호흡 기관의 영역 탐색을 강화하기 위해 가시광 및 적외선 열화상 카메라를 이용하여 영상을 취득하였다. 그리고 두 영상을 기반으로 얼굴 인식, 영상 정합 등의 과정을 통해 호흡 기관 영역의 특징을 추출한다. 추출한 특징 값을 통계학적 분류 방법 중 하나인 k-최근접 이웃 분류기를 통해 호흡 신호의 패턴을 분류한다. 분류한 패턴의 특성에 따라 호흡률을 계산하며, 측정한 호흡률의 성능을 확인하기 위해 실제 호흡률과 비교 과정을 통해 분석함으로써, 호흡률 측정의 가능성을 확인하였다.

로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식 (Accelerometer-based Gesture Recognition for Robot Interface)

  • 장민수;조용석;김재홍;손주찬
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.53-69
    • /
    • 2011
  • 로봇 자체 또는 로봇에 탑재된 콘텐츠와의 상호작용을 위해 일반적으로 영상 또는 음성 인식 기술이 사용된다. 그러나 영상 음성인식 기술은 아직까지 기술 및 환경 측면에서 해결해야 할 어려움이 존재하며, 실적용을 위해서는 사용자의 협조가 필요한 경우가 많다. 이로 인해 로봇과의 상호작용은 터치스크린 인터페이스를 중심으로 개발되고 있다. 향후 로봇 서비스의 확대 및 다양화를 위해서는 이들 영상 음성 중심의 기존 기술 외에 상호보완적으로 활용이 가능한 인터페이스 기술의 개발이 필요하다. 본 논문에서는 로봇 인터페이스 활용을 위한 가속도 센서 기반의 제스처 인식 기술의 개발에 대해 소개한다. 본 논문에서는 비교적 어려운 문제인 26개의 영문 알파벳 인식을 기준으로 성능을 평가하고 개발된 기술이 로봇에 적용된 사례를 제시하였다. 향후 가속도 센서가 포함된 다양한 장치들이 개발되고 이들이 로봇의 인터페이스로 사용될 때 현재 터치스크린 중심으로 된 로봇의 인터페이스 및 콘텐츠가 다양한 형태로 확장이 가능할 것으로 기대한다.

셀프센싱 상시계측 기반 CFRP보강 콘크리트 구조물의 손상검색 (Damage Detecion of CFRP-Laminated Concrete based on a Continuous Self-Sensing Technology)

  • 김영진;박승희;진규남;이창길
    • 토지주택연구
    • /
    • 제2권4호
    • /
    • pp.407-413
    • /
    • 2011
  • 본 논문에서는 콘크리트 보의 표면에 부착된 CFRP (Carbon Fiber Reinforced Plastic) 보강재의 박리 손상 진단을 위한 구조 건전성 모니터링 기법을 소개한다. 이를 위해 압전 능동 센서를 이용한 셀프센싱 회로 기반의 다중 스케일 계측 기법이 적용되었다. 다중 스케일 계측 시스템으로부터 셀프센싱 임피던스 계측을 통한 주파수 영역 구조 응답 및 셀프센싱 유도 초음파 계측을 통한 특정 주파수에서의 구조 응답을 획득할 수 있다. 박리 손상의 정량화를 위하여 임피던스 및 유도 초음파 신호로부터 추출된 손상 특성을 이용하여 2차원 손상 지수를 도출하고 이를 지도학습 기반 확률론적 패턴인식 기법에 적용하였다.

빅데이터 분석 도구 R 언어를 이용한 비정형 데이터 시각화 (Visualizing Unstructured Data using a Big Data Analytical Tool R Language)

  • 남수태;진금회;신성윤;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.151-154
    • /
    • 2021
  • 빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 그리고 빅데이터 분석 도구인 R언어를 이용하여 전-처리된 텍스트 데이터를 이용하여 다양한 시각화 함수를 통해 분석결과를 표현할 수 있다. 본 연구에서 사용된 데이터는 한국정보통신학회 학회지 논문 중에서 2021년 3월호 논문 21편을 대상으로 분석을 하였다. 최종 분석결과는 가장 많이 언급된 키워드는 "데이터"가 305회로 1위를 차지하였다. 따라서 이러한 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.

  • PDF

빅데이터 분석 도구 R 언어를 이용한 논문 데이터 시각화 (Visualizing Article Material using a Big Data Analytical Tool R Language)

  • 남수태;신성윤;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.326-327
    • /
    • 2021
  • 최근 빅데이터 활용은 매우 다양한 산업 분야에서 광범위하게 관심을 가지고 있다. 빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 그리고 빅데이터 분석 도구인 R언어를 이용하여 전-처리된 텍스트 데이터를 이용하여 다양한 시각화 함수를 통해 분석결과를 표현할 수 있다. 본 연구에서 사용된 데이터는 특정 학회지 논문 중에서 29편을 대상으로 분석을 하였다. 최종 분석결과는 가장 많이 언급된 키워드는 "연구"가 743회로 1위를 차지하였다. 따라서 이러한 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.

  • PDF