Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition

자율 감지 및 확률론적 신경망 기반 패턴 인식을 이용한 배관 구조물 손상 진단 기법

  • 이창길 (성균관대학교 건설환경시스템공학과) ;
  • 박웅기 (성균관대학교 u-City공학과) ;
  • 박승희 (성균관대학교 사회환경시스템공학과)
  • Received : 2011.06.21
  • Accepted : 2011.08.03
  • Published : 2011.08.30

Abstract

In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach.

최근 토목, 기계 및 항공 분야에서 구조물의 안전성 및 적정 성능 수준 확보를 위하여 구조물의 결함 및 노후화에 의한 성능저하 등을 상시적으로 모니터링하기 위한 관심이 높아지고 있다. 실제 구조물에서는 내부 미세 균열에서부터 국부 좌굴, 볼트 풀림, 피로 균열 등과 같이 다양한 형태의 손상이 복합적으로 발생 가능한데, 복합 손상을 단일 모드 계측 시스템으로부터 진단하기는 매우 어렵다. 따라서 본 연구에서는 이러한 복합 손상을 효율적으로 진단하기 위하여 선행 연구에서 제안된 압전센서를 이용한 자가 계측 회로 기반의 다중 모드 계측 시스템을 적용하였다. 자가 계측 회로 기반 다중 모드 계측 시스템은 크게 두 가지 형태의 신호를 계측한다. 첫 번째 모드는 임피던스 계측으로부터 특정 주파수 대역의 구조 응답을 계측하며, 두 번째 모드는 유도 초음파 계측으로부터 단일 중심 주파수에 해당하는 구조 응답을 계측한다. 복합 손상을 손상 유형별로 분류하기 위하여 E/M 임피던스와 유도 초음파의 계측으로부터 추출한 특성을 이용하여 2차원 손상지수를 계산하고 이를 지도학습 기반 패턴인식 기법 중 확률론적 신경망 기법에 적용한다. 제안된 기법의 적용성 검토를 배관 구조물에 인위적으로 다중 손상을 생성시켜 실험을 수행하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. S. J. Lee and H. Sohn, "Active self-sensing scheme development for structural health monitoring," Smart Materials and Structures, Vol. 15, No.6, pp. 1734-1746 (2006) https://doi.org/10.1088/0964-1726/15/6/028
  2. ANSI/IEEE Std. 176, IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, Inc., New Jersey, pp. 1-11 (1987)
  3. V. Giurgiutiu, A. Zagrai and J. J. Bao, "Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring," Structural Health Monitoring, Vol. 1, No.1, pp. 41-61 (2002) https://doi.org/10.1177/147592170200100104
  4. C. Liang, F. P. Sun and C. A. Rogers, "Coupled electro-mechanical analysis of adaptive material systems - determination of the actuator power consumption and system energy transfer," Journal of Intelligent Material Systems and Structures, Vol. 5, No. 1, pp. 12-20 (1994) https://doi.org/10.1177/1045389X9400500102
  5. F. P. Sun, C. Liang and C. A. Rogers, "Experimental modal testing using piezo-ceramic patches as collocated sensors actuators," Proc. of the 1994 SEM Spring Conference and Exhibits, Baltimore, MI (1994)
  6. F. P. Sun, Z. Chaudhry, C. A. Rogers and M. Majmundar, "Automated real-time structure health monitoring via signature pattern recognition," Proc. of SPIE, Vol. 2443, pp. 236-247 (1995)
  7. K. -D. Nguyen and J. -T Kim, "Numerical simulation of electro-mechanical impedance response in cable-anchor connection Interface," 비파괴검사학회지, Vol. 31, No. 1, pp. 11-23 (2011)
  8. J. D. Achenbach, Wave Propagation in Elastic Solids, North Holland, Amsterdam, pp. 202-258 (1973)
  9. S. B. Kim and H. Sohn, "Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials," Smart Materials and Structures, Vol. 16, pp. 2375-2387 (2007) https://doi.org/10.1088/0964-1726/16/6/042
  10. H. Lamb, "On waves in an elastic plate," Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, Vol. 93, No. 648, pp. 114-128 (1917)
  11. A. H. Nayfeh, Wave Propagation in Layered Anisotropic Media with Applications to Composites, Vol. 39, North Holland, Amsterdam, pp. 103-112 (1995)
  12. 임형진, 손훈, "불연속면에서 램파의 반사와 투과에 대한 정량적 추정", 비파괴검사학회지, Vol. 30, No. 4, pp. 359-366 (2010)
  13. M. Lemistre and D. Balageas, "Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing," Smart Materials and Structures, Vol. 10, No. 3, pp. 504-511 (2001) https://doi.org/10.1088/0964-1726/10/3/312
  14. V. Giurgiutiu and A. Zagrai, "Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method," Structural Health Monitoring, Vol. 4, No. 2, pp. 99-118 (2005) https://doi.org/10.1177/1475921705049752
  15. G. Park, A. C. Rutherford, H. Sohn and C. R. Farrar, "An outlier analysis framework for impedance-based structural health monitoring," Journal of Sound and Vibration, Vol. 286, No. 1-2, pp. 229-250 (2005) https://doi.org/10.1016/j.jsv.2004.10.013
  16. F. P. Sun, Z. Chaudhry, C. Liang and C. A. Rogers, "Truss structure integrity identification using PZT sensor-actuator," Journal of Intelligent Material Systems and Structures, Vol. 6, pp. 134-139 (1995) https://doi.org/10.1177/1045389X9500600117
  17. D. F. Specht, "Probabilistic neural networks," Neural Networks, Vol. 3, pp. 109-118 (1990) https://doi.org/10.1016/0893-6080(90)90049-Q
  18. D. K. Kim, J. J. Lee, J. H. Lee and S. K. Chang, "Application of probabilistic neural networks for prediction of concrete strength," Journal of Materials in Civil Engineering, Vol. 17, No. 3, pp. 353-362 (2005) https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(353)