• Title/Summary/Keyword: Statistical Modeling

Search Result 1,213, Processing Time 0.026 seconds

Comparison of Three Binomial-related Models in the Estimation of Correlations

  • Moon, Myung-Sang
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.585-594
    • /
    • 2003
  • It has been generally recognized that conventional binomial or Poisson model provides poor fits to the actual correlated binary data due to the extra-binomial variation. A number of generalized statistical models have been proposed to account for this additional variation. Among them, beta-binomial, correlated-binomial, and modified-binomial models are binomial-related models which are frequently used in modeling the sum of n correlated binary data. In many situations, it is reasonable to assume that n correlated binary data are exchangeable, which is a special case of correlated binary data. The sum of n exchangeable correlated binary data is modeled relatively well when the above three binomial-related models are applied. But the estimation results of correlation coefficient turn to be quite different. Hence, it is important to identify which model provides better estimates of model parameters(success probability, correlation coefficient). For this purpose, a small-scale simulation study is performed to compare the behavior of above three models.

An analysis of the potential impact of various ozone regulatory standards on mortality

  • Kim, Yong-Ku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.125-136
    • /
    • 2011
  • Ground-level ozone, an air pollutant that is monitored by the Environmental Protection Agency (EPA), damages human health by irritating the respiratory system, reducing lung function, damaging lung cells, and aggravating asthma and other chronic conditions. In March 2008, the EPA strengthened ozone standards by lowering acceptable limits from 84 parts per billion to 75 parts per billion. Here epidemiologic data is used to study the effects of ozone regulation on human health and assessed how various regulatory standards for ozone may affect nonaccidental mortality, including respiratory-related deaths during ozone season. The assessment uses statistical methods based on hierarchical Bayesian models to predict the potential effects of the different regulatory standards. It also analyzes the variability of the results and ho they are impacted by different modeling assumptions. We focused on the technical an statistical approach to assessing relationship between new ozone regulations and mortality while other researches have detailed the relationship between ozone and human mortality. We shows a statistical correlation between ozone regulations and mortality, with lower limits of acceptable ozone linked to a decrease in deaths, and projects that mortality is expected to decrease by reducing ozone regulatory standards.

Probabilistic Modeling of Fiber Length Segments within a Bounded Area of Two-Dimensional Fiber Webs

  • Chun, Heui-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.301-317
    • /
    • 2011
  • Statistical and probabilistic behaviors of fibers forming fiber webs of all kinds are of great significance in the determination of the uniformity and physical properties of the webs commonly found in many industrial products such as filters, membranes and non-woven fabrics. However, in studying the spatial geometry of the webs the observations must be theoretically as well as experimentally confined within a specified unit area. This paper provides a general theory and framework for computer simulation for quantifying the fiber segments bounded by the unit area in consideration of the "edge effects" resulting from the truncated length segments within the boundary. The probability density function and the first and second moments of the length segments found within the counting region were derived by properly defining the seeding region and counting region.

A Study on Constuct of Value-Added Productivity Structure Model using Multivariate Statistical Method (다변량통계기법을 이용한 부가가치생산성 구조모델의 구상에 관한 연구)

  • 이영찬;조성훈;김태성
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.38
    • /
    • pp.117-129
    • /
    • 1996
  • This Study intends to analysis what 3 factors, which are indices of Capital, Labor and Distribution, really affect to Value-Added Productivity through Statistical Analysis. For this, We selected 12 indices of Value-Added from the edition of 'Annual report of Korean companies' published in 'Korea Investors Service., Inc', especially in parts of Chemicals and Chemical products of total 85 companies. Using this data, Multivariate Statistical Analysis such as Principal Component Analysis, Factor Analysis, Covariance Structure Analysis is taken for modeling the effect of 3 factor(Labor Productivity, Capital Productivity and the Index of Distribution) on Value-Added Productivity.

  • PDF

Empirical variogram for achieving the best valid variogram

  • Mahdi, Esam;Abuzaid, Ali H.;Atta, Abdu M.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.547-568
    • /
    • 2020
  • Modeling the statistical autocorrelations in spatial data is often achieved through the estimation of the variograms, where the selection of the appropriate valid variogram model, especially for small samples, is crucial for achieving precise spatial prediction results from kriging interpolations. To estimate such a variogram, we traditionally start by computing the empirical variogram (traditional Matheron or robust Cressie-Hawkins or kernel-based nonparametric approaches). In this article, we conduct numerical studies comparing the performance of these empirical variograms. In most situations, the nonparametric empirical variable nearest-neighbor (VNN) showed better performance than its competitors (Matheron, Cressie-Hawkins, and Nadaraya-Watson). The analysis of the spatial groundwater dataset used in this article suggests that the wave variogram model, with hole effect structure, fitted to the empirical VNN variogram is the most appropriate choice. This selected variogram is used with the ordinary kriging model to produce the predicted pollution map of the nitrate concentrations in groundwater dataset.

A Wrist-Type Fall Detector with Statistical Classifier for the Elderly Care

  • Park, Chan-Kyu;Kim, Jae-Hong;Sohn, Joo-Chan;Choi, Ho-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1751-1768
    • /
    • 2011
  • Falls are one of the most concerned accidents for elderly people and often result in serious physical and psychological consequences. Many researchers have studied fall detection techniques in various domain, however none released to a commercial product satisfying user requirements. We present a systematic modeling and evaluating procedure for best classification performance and then do experiments for comparing the performance of six procedures to get a statistical classifier based wrist-type fall detector to prevent dangerous consequences from falls. Even though the wrist may be the most difficult measurement location on the body to discern a fall event, the proposed feature deduction process and fall classification procedures shows positive results by using data sets of fall and general activity as two classes.

BINGO: Biological Interpretation Through Statistically and Graph-theoretically Navigating Gene $Ontology^{TM}$

  • Lee, Sung-Geun;Yang, Jae-Seong;Chung, Il-Kyung;Kim, Yang-Seok
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.281-283
    • /
    • 2005
  • Extraction of biologically meaningful data and their validation are very important for toxicogenomics study because it deals with huge amount of heterogeneous data. BINGO is an annotation mining tool for biological interpretation of gene groups. Several statistical modeling approaches using Gene Ontology (GO) have been employed in many programs for that purpose. The statistical methodologies are useful in investigating the most significant GO attributes in a gene group, but the coherence of the resultant GO attributes over the entire group is rarely assessed. BINGO complements the statistical methods with graph-theoretic measures using the GO directed acyclic graph (DAG) structure. In addition, BINGO visualizes the consistency of a gene group more intuitively with a group-based GO subgraph. The input group can be any interesting list of genes or gene products regardless of its generation process if the group is built under a functional congruency hypothesis such as gene clusters from DNA microarray analysis.

Sensitivity analysis of skull fracture

  • Vicini, Anthony;Goswami, Tarun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • Results from multiple high profile experiments on the parameters influencing the impacts that cause skull fractures to the frontal, temporal, and parietal bones were gathered and analyzed. The location of the impact as a binary function of frontal or lateral strike, the velocity, the striking area of the impactor, and the force needed to cause skull fracture in each experiment were subjected to statistical analysis using the JMP statistical software pack. A novel neural network model predicting skull fracture threshold was developed with a high statistical correlation ($R^2=0.978$) and presented in this text. Despite variation within individual studies, the equation herein proposes a 3 kN greater resistance to fracture for the frontal bone when compared to the temporoparietal bones. Additionally, impacts with low velocities (<4.1 m/s) were more prone to cause fracture in the lateral regions of the skull when compared to similar velocity frontal impacts. Conversely, higher velocity impacts (>4.1 m/s) showed a greater frontal sensitivity.

On the Exponentiated Generalized Modified Weibull Distribution

  • Aryal, Gokarna;Elbatal, Ibrahim
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.333-348
    • /
    • 2015
  • In this paper, we study a generalization of the modified Weibull distribution. The generalization follows the recent work of Cordeiro et al. (2013) and is based on a class of exponentiated generalized distributions that can be interpreted as a double construction of Lehmann. We introduce a class of exponentiated generalized modified Weibull (EGMW) distribution and provide a list of some well-known distributions embedded within the proposed distribution. We derive some mathematical properties of this class that include ordinary moments, generating function and order statistics. We propose a maximum likelihood method to estimate model parameters and provide simulation results to assess the model performance. Real data is used to illustrate the usefulness of the proposed distribution for modeling reliability data.

Statistical network analysis for epilepsy MEG data

  • Haeji Lee;Chun Kee Chung;Jaehee Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.561-575
    • /
    • 2023
  • Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Magnetoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static/temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network differences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.