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Abstract
Modeling the statistical autocorrelations in spatial data is often achieved through the estimation of the vari-

ograms, where the selection of the appropriate valid variogram model, especially for small samples, is crucial for
achieving precise spatial prediction results from kriging interpolations. To estimate such a variogram, we tradi-
tionally start by computing the empirical variogram (traditional Matheron or robust Cressie-Hawkins or kernel-
based nonparametric approaches). In this article, we conduct numerical studies comparing the performance of
these empirical variograms. In most situations, the nonparametric empirical variable nearest-neighbor (VNN)
showed better performance than its competitors (Matheron, Cressie-Hawkins, and Nadaraya-Watson). The anal-
ysis of the spatial groundwater dataset used in this article suggests that the wave variogram model, with hole
effect structure, fitted to the empirical VNN variogram is the most appropriate choice. This selected variogram
is used with the ordinary kriging model to produce the predicted pollution map of the nitrate concentrations in
groundwater dataset.
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1. Introduction

In many situations we have data measured at spatial locations that can be analyzed by geostatistical
methods. Such methods are concerned in modeling the spatial trend and spatial correlation where
the traditional statistical methods cannot reflect the spatial features and dependencies in such data.
Modelling the statistical autocorrelation in spatial data is often achieved through the estimation of the
variogram, instead of a correlogram or covariogram, where the variogram plays an important role in
predicting the value of the target variable allocated at an unsampled distinct location (Matheron, 1962,
1963a, 1963b; Barry and Pace, 1997; Cressie, 1993, Chapter 3).

In geostatistics, it is common to assume that the spatial random process {Z(s) : s ∈ D ⊂ Rd},
where D is a subset of d-dimension Euclidean space, to be an isotropic and intrinsically stationary
random function; that is,

E[Z(si) − Z(s j)] = 0, ∀si, s j ∈ D, (1.1)
Var[Z(si) − Z(s j)] = 2γ(h), ∀si, s j ∈ D (1.2)

or equivalently (under the constant mean assumption), 2γ(h) = E[(Z(si) − Z(s j))2], where 2γ(h)
and γ(h) referred to Variogram and Semivariogram respectively, and h ∈ Rd is the lag interval that
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represents the distance between the two points si and s j. In this article, the word variogram is used
synonymously with semivariogram.

One crucial assumption of the variogram is conditional negative-definite, defined as
n∑

i=1

n∑
j=1

aia j2γ(si − s j) ≤ 0, (1.3)

for any finite number of spatial locations s1, . . . , sn and real numbers a1, . . . , an satisfying
∑n

i=1 ai = 0
(Armstrong and Jabin, 1981; Dunn, 1983).

The conditional negative-definite variogram has the spectral representation

2γ(h) =
∫ ∞

0
(1 −Ωd(uh))dF(u), (1.4)

where

Ωd(x) =
(

2
x

) d−2
2

Γ

(
d
2

)
K d−2

2
(x), (1.5)

Kκ(·) is the Bessel function of the first kind of order κ and F(·) is a non-decreasing function on (0,∞),
satisfying

∫ ∞
0 u2dF(u)/(1 + u2) < ∞ (Yaglom, 1987, Section 25).

Therefore, it is important to use a valid estimated variogram that satisfies the conditional negative-
definite assumption given in (1.3) and (1.4) so that it can be used in spatial predication models; other-
wise, we may get negative mean squared prediction errors (Jin and Kelly, 2017).

In practice, the first step in modeling and estimating the valid variogram is to compute the tra-
ditional empirical variogram or the kernel-based nonparametric version of the traditional empirical
variogram (Section 2).

In many situations, the empirical variogram estimator is not guaranteed to be conditionally negative-
definite (Armstrong and Jabin, 1981; Cressie, 1993, p.69). In this respect, the empirical variogram
is often approximated by a theoretical one that is guaranteed to be conditionally negative definite
(Cressie, 1993). This theoretical variogram can be approximated by either a parametric or a nonpara-
metric valid model. Comparative studies of both approaches, conducted by Menezes et al. (2005) and
Yu et al. (2007), showed superior results of the nonparametric estimators.

In this article, we evaluate the performance of the empirical variogram based on the traditional
Matheron, Cressie-Hawkins, and the kernel-based nonparametric approaches. In most cases, our
simulation results indicate that the kernel-based nonparametric empirical variable nearest-neighbor
(VNN) has a better performance than its competitors: the traditional Matheron, Cressie-Hawkins,
and the kernel-based Nadaraya-Watson (NW). We construct interpolated pollution maps of the nitrate
concentrations in the drinking water wells of the Gaza Strip in Palestine. We find that the wave
variogram fitted to the nonparametric empirical VNN variogram is the most appropriate model to
describe the spatial dependency in the nitrate dataset, so we use it in producing the final interpolated
kriging pollution maps.

In the next section, brief reviews of modeling and estimating the variograms are given. Simula-
tion studies in Section 3 comparing the performance of the traditional empirical variograms (Matheron
and Cressie-Hawkins) to two kernel-based nonparametric variograms (VNN and NW) are presented.
The environmental spatial dataset (the nitrate concentrations in the groundwater of Gaza Strip) being
analyzed is described in Section 4. Section 5 summarizes the conclusion results with brief recommen-
dations that can be used as a general guideline for decision-makers, water-resource managers, and
private users in Gaza Strip for preparing strategic plans for protecting water supplies.
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2. Estimation and modeling variogram

Let {Z(s) : s ∈ D ⊂ Rd} be a random process defined on a subset D of d-dimension Euclidean space
which can be modeled as follows

Z(s) = µ(s) + ε(s), (2.1)

where µ(s) denotes the deterministic trend which is usually modelled as a linear form
∑p

j=0 β jX j(s)
where {X j(s); j = 0, . . . , p, with X0(s) = 1} is a collection of nonrandom explanatory variables that
may or may not depend on spatial locations and β0, . . . , βp are unknown regression coefficients; {ε(·)}
is a zero-mean isotropic and intrinsically stationary random process with stationary autocovariance
function

Cov(ε(s + h), ε(s)) = C(h), ∀s ∈ D and h > 0. (2.2)

Suppose that we want to predict the value of the target variable Z at an unobserved location s0, Ẑ(s0),
based on the values of the observed data of size n. This would be done by kriging interpolation
methods that give the best linear unbiased prediction (Isaaks and Srivastava, 1989, p.289). Universal
kriging predictor takes the form of a linear combination of the data as follows

Ẑ(s0) =
p∑

j=0

β̂ jX j(s0) +
n∑

i=1

wi(s0)(Z(si) − µ̂(si)), (2.3)

where X0(s0) = 1; Ẑ(s0) is the estimated random variable at unobserved sites s0; si, i = 1, . . . , n is
the ith spatial location; β̂ j is the generalized-least-square estimator of β j; and the weights {wi(s0), i =
1, . . . , n}. The kriging predictors are constructed by minimizing Var(ẑ(s) − z(s)) subject to E[Ẑ(s)] =
E[Z(s)] = µ(s). The ordinary kriging is a special case of the universal kriging for which p in (2.3)
equals zero. Note that the general prediction formula of the inverse distance weighting is the same as
the one given by the ordinary kriging, where the weights depend solely on the observations within the
nearest-neighbor locations.

The assumption of a constant mean is not realistic in most spatial data; therefore, we have to
detrend the surface and then calculate the sample variogram. After the trend removal, we consider
Z(s) to be the second order stationary. Under the stationary assumptions, the bounded variogram is
related to the autocovariance function by the equation γ(h) = C(0)−C(h) so that kriging interpolation
relies on a valid variogram instead of a covariogram.

In this article, we render the residuals stationary and use Z(s) to compute the variogram for further
analysis. The traditional empirical variogram estimator as introduced by Matheron (1962) based on
the method-of-moments is

2γ̂(h) =
1
|N(h)|

∑
(i, j)∈N(h)

(Z(si) − Z(s j))2, (2.4)

where |N(h)| stands for the number of distinct pairs in N(h), which is the set formed by those locations
that are a distance h apart. A tolerance region for the distance h is generally used (Cressie, 1993).
Although, there is no specific rule for determining the size of the lag h, choosing the lag classes well
is important so that the researchers can use their knowledge of the phenomenon they are analyzing
(somewhat ad hoc procedures) (Garcı́a-Soidán et al., 2004).
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The Matheron’s estimator is unbiased; however, it has some drawbacks such as being badly af-
fected by outliers. Under the Gaussianity assumption, Cressie and Hawkins (1980) introduced a stable
robust to the outliers estimate of the variogram

2γ̂(h) =

{
1
|N(h)|

∑
(i, j)∈N(h) |Z(si) − Z(s j)|

1
2

}4(
0.457 + 0.494

|N(h)|

) , (2.5)

Genton (1998) indicated that the Cressie and Hawkins (1980) does not set boundaries for the effect of
outliers and a single large outlier could make the estimate meaningless.

Genton (1998) introduced a robust scale estimator based on the M-estimators of scale as proposed
by Croux and Rousseeuw (1992), Rousseeuw and Croux (1993). The resulting estimator of Genton
(1998) is

2γ̂(h) =
[
2.219

{
|Z(si) − Z(s j)|; i < j

}( H
2

)]2

, (2.6)

where H is the integer part of n/2 + 1, and the term {.}( H
2

) denotes the value of the
( H

2
)

ordered term
in braces.

These empirical estimators have some drawbacks in situations where the variogram curve is not a
smooth function due to non-increasing behaviors; therefore, it does not capture all spatial information
presented in the pattern. However, the kernel-based approach provides a nonparametric estimator of
the variogram which is smooth enough to capture most of the spatial information presented in the
pattern for which the other approach might not reveal (Diggle, 1985; Diggle et al., 1987; Berman and
Diggle, 1989; Hall et al., 1994; Stein, 1999; Lahiri et al., 1999; Menezes et al., 2005; Yu et al., 2007;
Huang et al., 2011; Garcı́a-Soidán and Menezes, 2012).

The standard nonparametric empirical variogram of Matheron (1962) based on the Nadaraya-
Watson’s kernel estimator as proposed by Hall et al. (1994), Garcı́a-Soidán et al. (2003, 2004) is

2γ̂(h) =

∑
i
∑

j K
( h−∥si−s j∥

b

) (
Z(si) − Z(s j)

)2

∑
i
∑

j K
( h−∥si−s j∥

b

) , (2.7)

where b is the smoothing parameter which presents the kernel bandwidth and K(·) is a symmetric
kernel with bounded second-order moments. It is generally agreed that the exact shape of the kernel
function, K(·), is not as important as the smoothing parameter and the choice of the bandwidth is based
on the usual trade-off between bias and variance. In this respect, the optimal choice of the smoothing
parameter given by minimizing the asymptotic mean integrated squared error (AMISE ) is

b̂ =
(

n−1R(K)
m2(K)2R(γ′′(h))

) 1
5

, (2.8)

where

AMISE = (nh)−1R(K) +
1
4

h2m2(K)2R
(
γ′′(h)

)
, (2.9)

with R(K) =
∫ ∞
−∞ K(u)2du; m2(K) =

∫ ∞
−∞ u2K(u)du.
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Yu et al. (2007) proposed two kernel estimators by replacing b in Hall et al. (1994) estimator by
a constant (δ) and a non-constant (δ0(si j)) nearest-neighbor parameters, where si j = ∥ si − s j ∥. Yu et
al. (2007) indicated that, in most of the situations, the estimator based on the non-constant nearest-
neighbor parameters is more general and better than the other one. The constant nearest-neighbor
parameter estimator (CNN) is defined as:

2γ̂(h) =

∑
i
∑

j I(| h − si j |< δ)
(
Z(si) − Z(s j)

)2∑
i
∑

j I(| h − si j |< δ)
, (2.10)

where I(·) is the indicator function, whereas the variable nearest-neighbor estimator is given by:

2γ̂(h) =

∑
i
∑

j
1

δ0(si j)
K

(
h−si j
δδ0(si j)

) (
Z(si) − Z(s j)

)2

∑
i
∑

j
1

δ0(si j)
K

(
h−si j
δδ0(si j)

) . (2.11)

The optimal choice of the nearest-neighbor smoothing parameter is derived by minimizing the AMISE

AMISE =
∫ ∞

0

(
B2(h) + V(h)

)
dh, (2.12)

with B2(h) = (1/4)γ′′(h)2m2(K)2(δδ0(h))4 and V(h) = 2γ̂(h)2 2R(K)/{n(n − 1)δδ0(h)}.
Yu et al. (2007) showed that the optimal choice of the constant nearest-neighbor smoothing pa-

rameters derived by minimizing takes the form

δ̂ =

 2R(K)
∫ a

0 2γ̂(h)2dh

n(n − 1)m2(K)2
∫ a

0 γ′′(h)2dh


1
5

, (2.13)

where a > 0, in practice, can be taken as the estimated range or a percentage of the variogram, whereas
the optimal choice of the variable nearest-neighbor smoothing parameters derived by minimizing take
the form

δ̂ = ξ

(
2R(K)

n(n − 1)m2(K)2

) 1
5

, (2.14)

and

δ̂0(h) =

ξ
(

2γ̂(h)
|γ′′(h)|

) 2
5 , if γ′′(h) , 0,

ξ∗, otherwise,
(2.15)

with ξ and ξ∗ being two arbitrary positive constants related to the degree of the spatial smoothing
parameters. Yu et al. (2007) suggested to consider of ξ = 1, 2 and ξ∗ to be greater than or equal to
2γ̂(h)2. Yu et al. (2007, Theorem 3) showed that the AMISE based on the optimal choice of δ̂ in (2.14)
and δ̂0(h) in (2.15) is less than the optimal one given in (2.13). It is worth noting that the indicator
kernel function in d = 2, the case of most interest in practice, indicates that δ̂ in (2.13) essentially
equals b̂ given in (2.8). Note also that the estimators in Equations (2.8), (2.13), and (2.15) depend on
the unknown true variogram. In practice, for R2, it is common to use the Epanechnikov kernel

K(u) = 0.75b−1
(
1 −

(u
b

)2
)

I(| u |≤ b), (2.16)

where Diggle (1985) suggests to consider the estimated bandwidth value b̂ = 0.68n−1/5 for a unit
square.
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2.1. Valid models

The drawback of the aforementioned empirical variograms (kernel and traditional) is that they may
fail to satisfy the conditionally negative-definite property which may lead to non-valid variograms
that we cannot use directly for spatial prediction. In this respect, the empirical variogram is often
approximated by a theoretical one that is guaranteed to be conditionally negative definite (Cressie,
1993). Estimation of the distribution function of the variogram at a specific location can be addressed
in two ways: the parametric way and the nonparametric way. Both approaches are strongly defended
by their authors. The parametric method assumes that the spatial data are drawn from a pre-specified
parametric distribution under some assumptions.

Let r =∥ h ∥ so that γ̂i = γ̂(ri), i = 1, 2, . . . , n are the estimated variogram values (e.g., empirical
variogram in (2.4), the first nonparametric approach to select a valid model was introduced by Shapiro
and Botha (1991). They used the weighted least squares (WLS ) criterion based on minimizing the
weighted sum squares

n∑
i=1

wi[γ̂(ri) − γ(ri)]2. (2.17)

The weights wi are given by wi = N(ri)γ(ri)−2, where N(ri) is the number of contributing pairs used
to estimate the variogram at the ith lag, which satisfies the conditions of the spectral representation
in (1.4) and (1.5) under some nonlinear constraints (Cressie, 1985). It should be noted that Garcı́a-
Soidán et al. (2003) adopted the local linear regression techniques to estimate the nonparametric
empirical variogram given in (2.7) where they applied the Shapiro and Botha (1991) test to estimate
the local linear empirical estimator by a valid variogram.

For the parametric approach, the common valid variogram models are the Linear, Circular, Ex-
ponential, Spherical, Gaussian, Matérn, and Wave models defined as follows, (the parameters θ =
(c0, c1, r) are the nugget effect (Although the definition of the variogram indicates that γ(0) = 0,
the estimator γ̂(0) , 0 due to the high variability between the observations taken at two very close
points that leads to increase the size of the discontinuity at zero; in addition, the discontinuity of the
variogram at zero is called a nugget effect.), the partial sill (It is very often that the variogram stops
increasing beyond a certain distance and becomes more or less stable around a limit value called a sill
value =c0 + c1.), and the range (The correlation between two variables tends to be equal to zero when
the distance h becomes too large. The distance r beyond which C(h) considered to be zero is called
the range.) respectively (Chilés and Delfiner, 1999; Cressie, 1993)):

• The spatial bounded linear variogram model

γ(h; θ) =


c0 + c1

(
h
r

)
, if 0 < h ≤ r,

c0 + c1, if h > r,
0, if h = 0,

(2.18)

where this model is valid in one-dimensional case, i.e., d = 1.

• The spatial circular variogram model

γ(h; θ) =

 c0 + c1

(
1 − 1

π
cos−1

(
h
r

)
+ 2h

rπ

√
1 − h2

r2

)
, if h ≤ r,

c0 + c1, otherwise.
(2.19)
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The circular model reaches the sill at || h || = r, where the tangent at || h || = 0 would cross the sill
c = c0 + c1 at a distance of (π/4)r.

• The spatial exponential variogram model

γ(h; θ) = c0 + c1

(
1 − exp

(
−3

h
r

))
, for h , 0. (2.20)

The exponential model reaches 95% of the sill at || h || = r asymptotically, where the tangent at
|| h || = 0 would cross the sill at a distance of (1/3)r.

• The spatial spherical variogram model

γ(h; θ) =

 c0 + c1

(
1.5

(
h
r

)
− 0.5

(
h
r

)3
)
, if h < r,

c0 + c1, otherwise.
(2.21)

The spherical model reaches the sill at || h || = r, where the tangent at || h || = 0 would cross the sill
at a distance of (2/3)r.

• The spatial Gaussian variogram model

γ(h; θ) = c0 + c1

(
1 − exp

(
−3

h2

r2

))
. (2.22)

The Gaussian model reaches 95% of the sill at || h || = r asymptotically, where the tangent at
|| h || = 0 would cross the sill c = c0 + c1 at a distance of (1/

√
3)r.

• The Matérn variogram model

γ(h; θ; κ) = c0 + c1

[
1 − 1

2κ−1Γ(κ)

(
h
r

)κ
Kκ

(
h
r

)]
, (2.23)

where Kκ(·) is the modified Bessel function of second kind of order κ, and κ is a parameter con-
trolling the smoothness of the realized random field (Matérn, 1960). Note that the spatial case of
Matérn model κ = 0.5 gives the exponential model and κ = ∞ is the Gaussian model.

• The spatial wave (hole-effect) variogram model

γ(h; θ) = c0 + c1

(
1 − π−1

( r
h

)
sin

(
πh
r

))
, for h , 0. (2.24)

The wave model is widely used when there is some periodicity in the data resulting in a hole effect
due to positive and negative correlations among different distant regions. The range in this model is
the shortest distance that occurs on the initial rise in the variogram function for which the variogram
equals the sill.

Gorsich and Genton (2000) noticed that most of these valid parametric variogram models appear
very similar, especially for large samples; however, their derivatives with respect to the lags are not.
Gorsich and Genton (2000) showed that the derivative of the nonparametric variogram estimator can
be used as a good tool to aid in the selection of the underlying variogram model. They proposed a
method for the selection of a valid parametric model via the derivation of a nonparametric variogram
estimate to avoid or simplify the task of checking different valid parametric variogram models.
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2.2. Best valid variogram

A common approach to achieve a valid variogram estimator is accomplished through the following
three steps:

• Step 1: Estimate an empirical parametric (classical Matheron or robust Cressie-Hawkins) or kernel-
based nonparametric variogram (Nadaraya-Watson or variable nearest-neighbor). Typically, this
variogram is non-valid and not useful in kriging interpolation.

• Step 2: Select a reasonable best theoretical model from the family of valid parametric or nonpara-
metric variograms that can fit the empirical model obtained from Step 1. This model is usually
selected by fitting-by-eye and ad hoc methods.

• Step 3: Estimate the parameters of the fitted theoretical model. The fitting procedures have either
been by-eye, least squares, weighted least squares, or restricted maximum likelihood estimation.

We propose an alternative procedure for selecting the best theoretical variogram model. The proposed
algorithm slightly modifies the aforementioned steps as:

• Step 1: Estimate the empirical parametric and nonparametric variograms appearing in the literature
(Matheron, Cressie-Hawkins, Nadaraya-Watson, and variable nearest-neighbor).

• Step 2: Fit some reasonable theoretical models to each one of the estimated variograms. In this
step, the parameters of the fitted model can be approximated by the WLS , ordinary least squares
(OLS), or residual maximum likelihood (REML) method.

• Step 3: Use kriging (ordinary kriging or regression-kriging) with each of the estimated theoretical
models, and then evaluate the prediction efficiency for each case. The accuracy of the prediction
can be evaluated by using the adjusted coefficient of multiple determination (R2

a):

R2
a = 1 −

(
n − 1
n − p

) (
1 − R2

)
, (2.25)

where R2 indicates the amount of variance explained by the model and p denotes the number of
variables used in the regression model.

An alternative method, that we recommend, is to use the K-fold cross-validation (CV(K)) technique
based on the mean squared prediction error (MSPE ) (e.g., Hastie et al., 2009, Chapter 7):

CV(K) =

(
1
K

) K∑
k=1

MSPE k, (2.26)

where

MSPE k =

(
1

mk

) mk∑
i=1

(
zi − ẑ(−k)

i

)2
, (2.27)

where for k = 1, . . . ,K folds, you fit the model with the kth fold removed, and obtain the predictions
ẑ(−k)

i for i = 1, . . . ,mk, where mk is the number of observations in the kth fold.

As a rule of thumb, K = 5 or K = 10 is a good choice, but one can also use the leave-one-out-cross-
validation by choosing the number of folds to be K = m.
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• Step 4: Choose the model that provides the lowest CV(K) where the estimated mean squared stan-
dardized prediction error (MSSPE ) should be as close to 1 as possible:

MSSPE k =

(
1

mk

) mk∑
i=1

(
zi − ẑ(−k)

i

)2

σ2(−k)
i

, (2.28)

where σ2(−k)
i , i = 1, . . . ,mk are the kriging variances for k = 1, . . . ,K folds.

Once, you select the best model, reuse it with the full dataset.

The proposed algorithm may be expensive due to the need for computational efficiency when selecting
a valid model; however, with advances in modern computing power has made this easy to accomplish.

3. Simulation studies

In this section, we conduct two different simulation studies to investigate the proposed algorithm for
achieving the best valid variogram. The simulations were all run using the R packages geoR (Ribeiro
and Diggle, 2001), npsp (Fernández-Casal, 2016), sp (Pebesma and Bivand, 2005), and gstat (Gräler
et al., 2016). For the first one, we simulate Gaussian spatial data, each of length n = 109 with a mean
of zero. The reason for selecting this sample size is to imitate the real spatial dataset, which has 109
observations (Section 4). This also reflects the fact that many applications including environmental
and epidemiology real data are relatively small. The coordinates of the real spatial dataset are used as
a polygon data to simulate the conditional irregular grids of the spatial locations in our simulated data.
For the second, we consider the case of regular grid by simulating several Gaussian dataset, each of
length n = 200 with a mean of zero and spatial locations si = (xi, yi), i = 1, 2, . . . , n, using a uniform
distribution on [0, 1] × [0, 1].

For both simulation schemes, we consider the aforementioned six theoretical variograms: Circu-
lar, Exponential, Spherical, Gaussian, Matérn, and Wave models to specify the spatial dependency.
The parameters of these models were selected in a way that the curves were comparable to the corre-
sponding range.

In the first simulation study, we fix the values of the nugget, c0, and the partial sill, c1, to be 1,600
and 2,000, respectively. The range parameter is chosen depending on the theoretical model: circular,
r = 4,000; exponential, r = 1,330; spherical, r = 4,000; Gaussian, r = 2,300; Matérn, r = 2,000; and
wave, r = 2,830. The order of the Bessel function, κ, of the Matérn model equals 0.7.

In the other simulation scheme, we consider κ = 0.7 and fix the values of the nugget and the partial
sill to be 0.2 and 5, respectively. The values of the range parameters corresponding to the circular,
exponential, spherical, Gaussian, Matérn, and wave variogram are 0.5, 0.167, 0.5, 0.289, 0.250, and
0.354, respectively. Some of these parameters values were selected from similar previous simulation
studies (e.g., Menezes et al., 2005, 2008).

With these selections, we have sill values of 3,600 and 5.2 in the first and second cases, respec-
tively, and for each case, we have a range that reaches the corresponding sill or asymptotically ap-
proaches 95% of the sill when the range is not finite. For both cases, we consider 1,000 replications
where we focus our attention on the isotropic case as the analysis of the real spatial dataset shows no
clear signs of anisotropy (see the rose diagram displayed in Figure 5).

First, we evaluate the empirical parametric and nonparametric variograms by comparing the esti-
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Figure 1: Box-plots of the evaluated ISE from four empirical parametric and nonparametric variograms are
based on fitting the true theoretical model to a generated irregular spatial data with length 109 according to the

first simulation scheme with 1,000 replications. The dashed line denotes the true median parameter value.

mated integrated squared error (ISE ) given by

ISE =
∫ h1

h0

[γ̂(h) − γ(h)]2dh, (3.1)

where γ̂(h) and γ(h) are the empirical estimator and the theoretical curve, respectively, and the inte-
gral is calculated over an interval of selected distances [h0, h1]. The ISE provides a useful measure
of model accuracy which measures the deviation between each of the empirical estimators and the
theoretical variogram, and the smaller the values of the ISE the better the selected model. The ISE can
be used as a sufficient criterion for model diagnostics in spatial analysis and cross-validation is un-
necessary (Yu et al., 2007; Cressie, 1993). For each generated data set, we obtain the estimates of the
empirical parametric variograms given in (2.4) and (2.5) by considering the lags of 20 and 30 pairs for
the first and second simulation methods, respectively, whereas the empirical variograms given in (2.7)
and (2.11) are estimated using the optimal choices of the smoothing parameters that minimizes the
AMISE given in (2.9) and (2.12), respectively. For each simulation method, we approximate the true
marginal distribution by fitting the true theoretical model based on the weighted least squares method
and then we use the trapezoidal rule to estimate the ISE values between this model and each of the
empirical models.

Figures 1–2 display the box-plots describing the distribution of the ISE values based on the median
and interquartile range. The dashed red line denotes the true median parameter value. In addition,
the median values of the empirical variogram estimators are close to the theoretical values and the
distribution of the ISE of each variogram is slightly right skewed suggesting that the majority of the
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Figure 2: Box-plots of the evaluated ISE from four empirical parametric and nonparametric variograms, based
on fitting the true theoretical model to a generated regular spatial data with length 200 according to the second

simulation scheme with 1,000 replications. The dashed line denotes the true median parameter value.

ISE values are small. In most cases, the figures show that the best is achieved by the variable nearest-
neighbor followed by Nadaraya-Watson kernel models in the presence of the exponential, Gaussian,
Spherical, Matérn, and wave models. It is also evident that the lowest ISE values are associated
with the wave curve and the largest ones are associated with the circular curve, where the robust
parametric Cressie-Hawkins variogram is the preferred choice in the circular model. In general, based
on the simulation results, we conclude that the traditional Matheron and Cressie-Hawkins estimators
may have some drawbacks in situations where the variogram curve is not a smooth function due
to non-increasing behaviors; therefore, it does not capture all spatial information presented in the
pattern. However, the kernel-based approach provides a nonparametric estimator of the variogram
which is smooth enough to capture most of the spatial information presented in the pattern that the
other approach might not reveal. Next, we fit each of the six parametric models given by (2.19)–(2.24)
to the four empirical parametric and nonparametric variograms. We use the weighted least squares
method to estimate the parameters of the fitted model and then use it with simple kriging. For each
case, we randomly split the generated data into K = 10 folds as test data and consider the remaining
K − 1 folds as training data and estimate the MSPE k, MSSPE , and CV(K) values.

Table 1 shows the estimated CV(K) and MSSPE (in parenthesis) values, where the CV(K) with
the lowest value is put in boldface to assist the reader. When MSSPE< 1, we underestimate the
true estimation; when MSSPE> 1, we overestimate; when MSSPE≈ 1, the actual estimated error
equals on average to the error predicted by the model. It is worth noting that we did not include the
nonparametric model given by Shapiro and Botha (1991) in our numerical study as the simulation
results indicate that the performance of each of the empirical nonparametric estimators was superior
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Table 1: CV(K) (and associated MSSPE values in parenthesis) based on the kriging at 10-Fold validations when
each of the theoretical models given by (2.19), (2.20), (2.21), (2.22), (2.23), (2.24), and (2.17) is fitted (using
WLS method) to the four empirical parametric and nonparametric variograms for simulated irregular and regular
spatial data with lengths n = 109 and n = 200 according to two the simulation scheme with circular,
exponential, spherical, Gaussian, Matérn, and wave models.

Fitted model Empirical model, n = 109 Empirical model, n = 200
Matheron Cressie-Hawkins NW VNN Matheron Cressie-Hawkins NW VNN

Circular
Circular 1.11(0.487) 1.02(0.545) 1.72(0.289) 1.63(0.201) 1.01(0.481) 1.09(0.526) 1.51(0.309) 1.60(0.300)
Exponential 5.43(0.132) 6.02(0.121) 6.19(0.101) 5.98(0.128) 5.04(0.099) 5.00(0.164) 6.01(0.141) 5.76(0.111)
Spherical 3.56(0.286) 2.93(0.297) 2.06(0.267) 2.00(0.284) 3.08(0.302) 2.43(0.298) 2.29(0.289) 1.89(0.275)
Gaussian 6.65(0.281) 5.14(0.331) 3.93(0.291) 3.44(0.288) 4.44(0.303) 5.82(0.299) 3.33(0.278) 3.72(0.225)
Matérn 2.96(0.362) 2.93(0.390) 2.66(0.316) 2.64(0.329) 2.71(0.354) 2.73(0.390) 2.29(0.310) 2.19(0.311)
Wave 2.74(0.158) 2.51(0.200) 2.33(0.187) 2.20(0.192) 2.01(0.212) 2.22(0.229) 1.99(0.205) 1.83(0.213)

Exponential
Circular 4.27(0.487) 4.10(0.419) 3.59(0.496) 3.82(0.484) 4.09(0.455) 4.11(0.491) 3.62(0.501) 3.59(0.513)
Exponential 1.99(0.612) 2.00(0.618) 0.98(0.797) 0.80(0.812) 1.51(0.712) 1.40(0.727) 0.77(0.848) 0.58(0.879)
Spherical 2.11(0.656) 2.00(0.683) 1.88(0.700) 1.87(0.726) 1.39(0.667) 1.49(0.680) 1.06(0.769) 1.00(0.801)
Gaussian 2.82(0.619) 2.08(0.679) 2.53(0.695) 2.02(0.718) 2.52(0.635) 2.32(0.664) 2.12(0.783) 2.29(0.790)
Matérn 2.48(0.660) 2.26(0.678) 1.55(0.693) 1.49(0.710) 2.27(0.681) 2.19(0.693) 2.03(0.712) 1.93(0.743)
Wave 4.04(0.518) 3.89(0.546) 2.89(0.568) 2.67(0.582) 3.88(0.569) 3.69(0.598) 2.94(0.637) 2.37(0.655)

Spherical
Circular 2.77(0.505) 2.70(0.570) 2.62(0.629) 2.59(0.701) 2.72(0.591) 2.65(0.628) 2.19(0.729) 2.17(0.787)
Exponential 2.64(0.577) 2.58(0.583) 2.46(0.601) 2.38(0.627) 2.61(0.616) 2.59(0.698) 2.44(0.719) 2.11(0.728)
Spherical 1.08(0.761) 0.99(0.770) 0.81(0.876) 0.82(0.901) 1.03(0.810) 1.00(0.824) 0.77(0.885) 0.74(0.942)
Gaussian 2.64(0.600) 2.44(0.628) 2.39(0.678) 2.34(0.690) 2.60(0.660) 2.53(0.703) 2.39(0.712) 2.27(0.735)
Matérn 2.22(0.606) 2.19(0.610) 2.13(0.718) 2.11(0.727) 2.00(0.671) 2.04(0.693) 1.95(0.723) 1.97(0.777)
Wave 1.86(0.688) 1.83(0.702) 1.72(0.715) 1.76(0.721) 1.65(0.714) 1.71(0.735) 1.50(0.775) 1.49(0.810)

Gaussian
Circular 3.67(0.755) 3.00(0.730) 2.59(0.798) 2.61(0.800) 3.09(1.126) 3.11(1.204) 2.61(1.128) 2.54(1.081)
Exponential 1.87(0.729) 1.78(0.766) 1.31(0.826) 1.22(0.886) 1.62(1.328) 1.52(1.275) 1.20(0.874) 1.19(0.893)
Spherical 1.22(0.459) 1.25(0.528) 0.88(0.709) 0.80(0.693) 1.19(0.442) 1.09(0.592) 0.76(0.683) 0.75(0.708)
Gaussian 1.39(1.231) 1.20(1.301) 0.78(.901) 0.99(0.923) 1.00(0.875) 1.00(0.890) 0.66(0.952) 0.87(0.900)
Matérn 1.78(1.213) 1.66(1.190) 1.00(0.960) 0.99(0.947) 1.35(1.200) 1.38(1.198) 1.03(1.102) 0.95(1.002)
Wave 3.00(0.699) 2.01(0.730) 1.99(0.780) 1.63(0.820) 2.87(0.773) 2.66(0.767) 1.71(0.824) 1.43(0.829)

Matérn
Circular 2.55(0.802) 2.60(0.791) 2.51(0.854) 2.46(0.873) 2.50(1.220) 2.50(1.375) 2.12(1.109) 2.04(1.213)
Exponential 1.76(0.676) 1.44(0.703) 1.41(0.782) 1.38(0.788) 1.42(0.801) 1.31(0.825) 1.22(0.867) 0.95(0.881)
Spherical 3.57(0.470) 3.65(0.448) 3.32(0.497) 3.27(0.503) 3.45(0.539) 3.41(0.556) 3.20(0.605) 3.13(0.646)
Gaussian 2.44(0.336) 2.41(0.323) 2.35(0.395) 2.30(0.398) 2.30(0.441) 2.19(0.453) 1.99(0.493) 2.00(0.497)
Matérn 1.00(1.284) 1.01(1.190) 0.85(0.991) 0.69(1.012) 0.97(1.300) 0.95(1.167) 0.86(1.117) 0.66(1.082)
Wave 1.55(0.760) 1.46(0.832) 1.30(0.803) 1.30(0.900) 1.47(0.794) 1.43(0.802) 1.26(0.901) 1.20(0.910)

Wave
Circular 1.60(0.770) 1.87(0.729) 1.53(0.815) 1.63(0.826) 1.92(0.764) 1.37(0.826) 1.28(0.844) 1.16(0.876)
Exponential 3.99(0.459) 4.08(0.525) 3.42(0.584) 3.33(0.594) 2.91(0.506) 3.01(0.476) 2.72(0.619) 2.50(0.637)
Spherical 3.76(0.508) 3.54(0.553) 3.17(0.598) 3.13(0.608) 3.52(0.558) 3.43(0.617) 3.29(0.622) 3.21(0.650)
Gaussian 3.03(0.533) 3.19(0.524) 2.86(0.621) 2.65(0.628) 2.89(0.575) 2.78(0.596) 2.39(0.626) 2.21(0.640)
Matérn 2.55(0.663) 2.41(0.688) 2.16(0.707) 2.15(0.702) 2.49(0.716) 2.46(0.722) 2.10(0.748) 1.97(0.752)
Wave 0.98(1.208) 1.01(1.196) 0.45(1.116) 0.42(1.009) 0.86(1.194) 0.84(1.123) 0.38(1.010) 0.33(1.002)

when compared to empirical parametric estimators. In the case of generating data using a circular
variogram, the empirical parametric Cressie-Hawkins variogram is slightly better with smaller values
of CV(K) than the Matheron (1.02 versus 1.11) in achieving the best valid model (true circular model).
The robust empirical parametric Cressie-Hawkins gives the lowest values of mean prediction errors
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for the case of spatial dependency with a circular model. Similarly, we noticed that the Nadaraya-
Watson kernel model achieved a higher accuracy of prediction when the true theoretical Gaussian
models fit a variogram from a generated Gaussian model compared with the others. For all other
cases, the variable nearest-neighbor variogram presents the best performance to achieve the best valid
model whose MSSPE values are closest to 1 with the lowest mean prediction errors.

4. Nitrate concentrations in groundwater: a case study in Gaza Strip

Gaza Strip is a narrow sliver of land with a total area of 365 square kilometers located in arid and
semi-arid areas at longitudes 34◦20′ East and latitudes 31◦25′ North. There are 25 municipalities
distributed in the five governorates of the Gaza Strip: Northern Gaza, Gaza, Deir el-Balah, Khan
Yunis, and Rafah governorates. Approximately 49% of the land in the Gaza strip are agricultural
areas, 28.8% are sand dunes, 3.3% are wooded, and 18.9% are urban areas. As of the year 2014,
the Gaza Strip has a population density of 4,583 inhabitants per a square kilometer and the estimated
natural increasing rate was 4.24 (Palestinian Central Bureau of Statistics, 2014). This indicates that
the Gaza Strip is one of the world’s most densely populated areas, which causes many problems in
water resources and groundwater quality Shomer et al. (2004).

There are more than 4000 wells within the Gaza Strip. More than 97% of these are privately
owned, where they have been exploited irrationally for agricultural purposes. Only 109 wells are
operated by municipalities where they are mainly used for domestic supply of drinking water. The
irrigation and drinking water quality in Gaza Strip is not optimal, where chemical analyses of irri-
gation wells indicate high salinity and sodium adsorption ratio, SAR , ratio (Al-Najar, 2011). In this
context, in August 2012, the United Nations issued a warning report in which they warned that the
water aquifer in the Gaza Strip may become unusable by the year 2016 with an irreversible damage
by the year 2020 (United Nations, 2012). Nitrate concentration in groundwater generally increases
with higher nitrogen input and higher aquifer vulnerability (Nolan et al., 1998). Drinking water in
excess of admissible nitrate limit can result in severe health problems, especially for infants less than
two months of age (Spalding and Exner, 1993). Consequetly, the European Union has established
a drinking-water standard of 50 milligrams per liter (mg/L) nitrate (or approximately 3.91 mg/L for
log-transformation scale) as nitrogen (European Union, 2006), whereas the United States Environ-
mental Protection Agency, EPA , considered 10 (mg/L) nitrate as the maximum potable as nitrogen
(or approximately 2.30 mg/L for log-transformation scale) United States Environmental Protection
Agency (1995).

In this section, we analyze the spatial dependency in the NO3 groundwater concentrations dataset
obtained from the Ministry of Planning in the Gaza Strip, Palestine in 2012. We hope that the results
of this research can help decision-makers, water-resource managers and private users to protect water
supplies.

Figure 3 below shows the distribution of the groundwater wells in the study area in the Gaza
Strip. The target variable is the nitrate, NO3 concentration in drinking water wells, where we have
109 observations irregularly measured on spatial locations 77585.36 ≤ X ≤ 106475.1 and 78491.00 ≤
Y ≤ 107217.9.

Figure 4 shows the sample locations of the concentration levels of the NO3 measured in milligrams
per liter (mg/L). Table 2 gives a statistical summary for nitrate concentration levels in groundwater
measured in the Gaza Strip. Based on the groundwater quality regulated by United States Environ-
mental Protection Agency (1995), the results in Table 2 show that all wells in the Gaza Strip suffer
from groundwater contamination by nitrates (more than 10 mg/L). In addition, more than 86% of the
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Figure 3: Distribution of groundwater wells in Gaza Strip (365 km2).
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Figure 4: The sample locations (in Gaza Strip) for the NO3-nitrate concentration data. The bullets indicate the
nitrate concentration measurements in milligrams per liter (mg/L).

wells with NO3 concentration exceed the maximum potable concentration of 50 mg/L (approximately
3.91 mg/L for log-transformation of NO3), as classified by European Union (2006), which can po-
tentially cause fatal conditions in infants (Spalding and Exner, 1993). The results suggest that the
groundwater quality is severely deteriorated in the south region (Khan Yunis and Rafah governorates)
of the Gaza Strip. The apparent variance-mean relationship (Table 2) suggests that the observed data
departs from Gaussian distribution. In this respect, we use the log-transformation in order to alleviate
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Table 2: Summary statistics for nitrate concentration (and log-transformed) levels in groundwater measured in
Gaza Strip

Statistics Northern Gaza Deir Khan Rafah Totalel-Balah Yunis

Number wells 29 35 16 19 10 109
> 50 mg NO3/L 27 29 11 18 9 94

Mean untransformed 105.2 96.6 119.3 131.3 115.3 110
transformed (4.5) (4.4) (4.5) (4.8) (4.6) (4.5)

Median untransformed 76.5 93.6 82.9 110.1 112.1 94.7
transformed (4.3) (4.5) (4.4) (4.7) (4.7) (4.6)

Standard untransformed 54.17 47.96 91.8 60.23 57.90 60.80
deviation transformed (0.50) (0.56) (0.80) (0.45) (0.62) (0.58)

Minimum untransformed 41.7 20.1 21.7 50.0 27.2 20.1
transformed (3.7) (3.0) (3.1) (3.9) (3.3) (3.0)

Maximum untransformed 219.8 196.8 292.6 284.1 198.6 292.6
transformed (5.4) (5.3) (5.7) (5.6) (5.3) (5.7)

the departure from the non-symmetric distribution.
We use the Moran’s I index to test the presence of global spatial autocorrelation in the values of

the target variable based on the locations where they were measured (Moran, 1950). The Moran’s I
test statistic for a sample of size n is given by

I =
n
∑n

i=1
∑n

j=1 wi j(zi − z̄)(z j − z̄)∑n
i=1

∑n
j=1 wi j

∑n
k=1(zk − z̄)2 , (4.1)

where zi is the ith observation, z̄ is the sample mean of the target variable, and wi j is the spatial weight
of the link between i and j. The p-value based on Moran’s I test is 1.24×10−07, and it indicates strong
spatial correlations among the NO3 values (Moran, 1950). Therefore, it is reasonable to model the
spatial correlation by estimating a valid variogram that can be used for kriging.

To model the valid variogram, we first use the rose diagram to visualize the empirical paramet-
ric and nonparametric variogram values in all directions of anisotropy. Figure 5 displays the rose
diagrams (Isaaks and Srivastava, 1989; Jammalamadaka and Sengupta, 2001; Waller and Crawford,
2004) of the nonparametric Nadaraya-Watson variogram for the NO3 data for the five governorates
together with the corresponding rose diagram of all governorates. The rose maps clearly show consis-
tent pattern around a regular disk with very minor directions to the south west region. We have found a
similar pattern based on the parametric variograms (results are available upon request); consequently,
we use the isotropic variogram in our analysis due to space contraonts.

We then estimate the empirical parametric variogram given by (2.4) and (2.5). In addition, we
also estimate the nonparametric NW and VNN empirical variograms using the optimal choices of the
smoothing parameters in Equations (2.14), and (2.15) as suggested by Yu et al. (2007) along with an
Epanechnikov kernel model, ξ = 1 and ξ∗ = 2γ̂(h)2.

Then we fit the theoretical circular, exponential, spherical, Gaussian, Matérn, and wave models to
each empirical model (Figures 6–9).

After that, we apply different ordinary kriging models based on estimated valid variograms to
empirical variograms as well as use cross-validation. We use 10% of the data as a test data and
consider the remainder 90% as a training data to select the best kriging model. We choose the final
model that provides the lowest value of the CV(K). The results in Table 3 suggest that the wave
(hole-effect) variogram model (with nugget 498.01, partial sill 1875.23, and range 1192.15) fitted to
the empirical variable nearest-neighbor variogram is the best for modeling the spatial structures of
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Figure 5: Rose diagrams of the nonparametric Nadaraya-Watson variogram the NO3 data.
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Figure 6: The circular, exponential, spherical, Gaussian, Matérn, and wave parametric variograms are fitted to
the empirical Matheron’s variogram for the NO3 concentrations.
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Figure 7: The circular, exponential, spherical, Gaussian, Matérn, and wave parametric variograms are fitted to
the empirical Cressie-Hawkins’ modulus variogram for the NO3 concentrations.

0 2000 4000 6000 8000

20
00

30
00

distance

se
m

iva
ria

nc
e

Nadaraya−Watson
Circular

0 2000 4000 6000 8000

20
00

30
00

distance

se
m

iva
ria

nc
e

Nadaraya−Watson
Exponential

0 2000 4000 6000 8000

20
00

30
00

distance

se
m

iva
ria

nc
e

Nadaraya−Watson
Spherical

0 2000 4000 6000 8000

20
00

30
00

distance

se
m

iva
ria

nc
e

Nadaraya−Watson
Gaussian

0 2000 4000 6000 8000

20
00

30
00

distance

se
m

iva
ria

nc
e

Nadaraya−Watson
Matern

0 2000 4000 6000 8000

20
00

30
00

distance

se
m

iva
ria

nc
e

Nadaraya−Watson
Wave

Figure 8: The circular, exponential, spherical, Gaussian, Matérn, and wave parametric variograms are fitted to
the Nadaraya-Watson’s nonparametric variogram for the NO3 concentrations.
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Figure 9: The circular, exponential, spherical, Gaussian, Matérn, and wave parametric variograms are fitted to
the variable nearest-neighbor nonparametric variogram for the NO3 concentrations.

Table 3: Cross validation results of fitting variogram models for nitrate concentrations

Prediction errors
Models Root mean squared Root mean squared standardized

Matheron Cressie-Hawkins NW VNN Matheron Cressie-Hawkins NW VNN
Circular 0.471 0.483 0.485 0.491 0.998 0.993 0.976 0.970
Exponential 0.471 0.475 0.486 0.490 0.995 0.980 0.977 0.969
Spherical 0.476 0.479 0.487 0.485 1.003 0.984 0.978 0.970
Gaussian 0.498 0.504 0.509 0.517 1.036 1.022 1.020 1.019
Matérn (κ = 0.7) 0.476 0.480 0.492 0.502 1.001 0.987 0.987 0.986
Wave 0.413 0.424 0.429 0.409 1.001 1.007 1.006 1.003

the log-transformation of the NO3 data. The resulted interpolation map is shown in the left panel of
Figure 11. The map shows eight levels of contamination risk of groundwater from very low nitrogen
input (green areas on the map), to low nitrogen input (yellow areas), to median nitrogen input (brown
areas), to high nitrogen input (gray areas on the map). The right panel of Figure 11 shows the kriging
prediction error variances map produced by kriging interpolation, which clearly demonstrates that
locations near existing groundwater wells have lower kriging standard error values, whereas higher
kriging standard error values can be found in areas having less or no wells. The p-value of the Moran’s
I test is 0.24 indicating that we have no evidence of spatial correlation in the kriging residuals.

5. Concluding remarks

The selection of the appropriate valid variogram model (especially for small samples) is crucial to
obtain accurate prediction results from kriging interpolations; otherwise, negative mean squared pre-
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Figure 10: Cross-validation of kriging results with wave model.
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Figure 11: The panel on the left hand side shows the predicted pollution maps of the nitrate concentrations based
on the ordinary kriging interpolation with a wave variogram. The panel on the right hand side shows the kriging

prediction error map.

diction errors may be obtained. To estimate such a variogram, we often first estimate the empirical
variogram: the traditional variogram (Matheron or robust Cressie-Hawkins); or the kernel-based var-
iogram (Nadaraya-Watson or variable nearest-neighbor). In many situations, the empirical variogram
estimator is not guaranteed to be valid. In practice, we estimate the empirical variogram by a theo-
retical model selected from the family of valid variograms. The results obtained in this study suggest
following the procedure algorithm to achieve the best valid variogram. We apply this approach on
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the nitrate concentrations in the groundwater dataset and then find that the wave (hole-effect) vari-
ogram model fitted to the empirical variable nearest-neighbor, VNN, variogram provides the lowest
values of the CV(K). The interpolation map indicates that the quality of the groundwater in the Gaza
Strip has a serious issue due to high levels of nitrate concentrations. Decision-makers, water-resource
managers, and private users in the Gaza Strip are strongly encouraged to implement an immediate
strategic solution to protect the groundwater wells of the Gaza Strip, especially in the south region.
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